Real Analysis Exchange

On a Zero-Infinity Law of Olsen

Enrico Zoli

Full-text: Open access

Abstract

Let $\mu$ be a translation-invariant metric measure on $\mathbb{R}$ with the following scaling property: for every $\lambda \in (0,1)$ there exists $b(\lambda)>\lambda$ with $\mu(\lambda X)\geq b(\lambda) \mu(X)$ for all $X \subseteq \mathbb{R}$. If $X$ is a $\mathbb{Z}$-invariant subset of $\mathbb{R}$ with $X/q \subseteq X$ for some $q\in \mathbb{N}\setminus \{1\}$, then $\mu(X)=0$ or $\mu(X\cap O)=\infty$ for every non-empty open set $O$. This refines an earlier result by Olsen.

Article information

Source
Real Anal. Exchange Volume 34, Number 1 (2008), 215-218.

Dates
First available: 19 May 2009

Permanent link to this document
http://projecteuclid.org/euclid.rae/1242738932

Zentralblatt MATH identifier
05578226

Mathematical Reviews number (MathSciNet)
MR2527134

Subjects
Primary: 28A12: Contents, measures, outer measures, capacities 28A78: Hausdorff and packing measures
Secondary: 11J83: Metric theory

Keywords
zero--infinity laws Hausdorff and packing measures scaling property Z-invariant sets translation-invariant metric measures

Citation

Zoli, Enrico. On a Zero-Infinity Law of Olsen. Real Analysis Exchange 34 (2008), no. 1, 215--218. http://projecteuclid.org/euclid.rae/1242738932.


Export citation

References

  • Y. Bugeaud, M.M. Dodson, and S. Kristensen, Zero–infinity laws in Diophantine approximation, Quart. J. Math. 56 (2005), 311–320.
  • M. Csörnyei and R.D. Mauldin, Scaling properties of Hausdorff and packing measures, Math. Ann. 319 (2001), 817–836.
  • M. Elekes and T. Keleti, Borel sets which are null or non-$\sigma$-finite for every translation invariant measure, Adv. Math. 201 (2006), 102–115.
  • P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, London, 1995.
  • R.D. Mauldin and S.C. Williams, Scaling Hausdorff measures, Mathematika 36 (1989), 325–333.
  • L. Olsen, On the dimensionlessness of invariant sets, Glasgow Math. J. 45 (2003), 539–543.
  • H. Weber and E. Zoli, On a theorem of Volkmann, Real Anal. Exchange 31(1) (2006), 1–6.