Real Analysis Exchange

Maximally Resolvable Lower Density Spaces

David Rose and Ben Thurston

Full-text: Open access

Abstract

We show that all measure based and all category based lower density topologies on $\mathbb{R}$ are maximally resolvable in $\mathbf{ZFC}$ and extraresolvable under $\mathbf{ZFC + MA}$. It is also noted that both maximal resolvability and extraresolvability are feeble topological properties

Article information

Source
Real Anal. Exchange Volume 33, Number 2 (2007), 475-482.

Dates
First available in Project Euclid: 18 December 2008

Permanent link to this document
http://projecteuclid.org/euclid.rae/1229619426

Mathematical Reviews number (MathSciNet)
MR2458265

Zentralblatt MATH identifier
1159.28001

Subjects
Primary: 28A05: Classes of sets (Borel fields, $\sigma$-rings, etc.), measurable sets, Suslin sets, analytic sets [See also 03E15, 26A21, 54H05] 54A10: Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)
Secondary: 54C08: Weak and generalized continuity

Keywords
measure based lower density space category based lower density space maximal resolvability extraresolvability feeble topological property feeble homeomorphism

Citation

Rose, David; Thurston, Ben. Maximally Resolvable Lower Density Spaces. Real Anal. Exchange 33 (2007), no. 2, 475--482. http://projecteuclid.org/euclid.rae/1229619426.


Export citation

References

  • V. Aversa & W. Wilczyński, Simple density topology, Rend. Circ. Mat. Palermo, Serie II-Tomo LIII, (2004), 344–352.
  • A. Bella, The density topology is extraresolvable, Atti Sem. Mat. Fis. Univ. Modena, 48 (2000), 495–498.
  • J. G. Ceder, On maximally resolvable spaces, Fund. Math., 55 (1964), 87–93.
  • K. Ciesielski, Set Theory for the Working Mathematician, Cambridge University Press, (1997).
  • W. W. Comfort and S. García-Ferreira, Resolvability: a selective survey and some new results, Topology Appl., 74 (1996), 149–167.
  • W. W. Comfort and S. García-Ferreira, Dense subsets of maximally almost periodic groups, Proc. Amer. Math. Soc., 129(2) (2000), 593–599.
  • J. Hejduk and G. Horbaczewska, On $\mathcal{I}$-density topologies with respect to a fixed sequence, Reports on Real Analysis, Conference at Rowy (2003), 78–85.
  • E. Hewitt, A problem of set-theoretic topology, Duke Math. J., 10 (1943), 309–333.
  • G. Horbaczewska, The family of $\mathcal{I}$-density Type Topologies, Comment. Math. Carolinae, 46(4) (2005), 735–745.
  • E. Łazarow, R. A. Johnson, and W. Wilczyński, Topologies related to sets having the Baire property, Demonstratio Math., 22(1) (1989), 179–191.
  • J. Luukkainen, The density topology is maximally resolvable, Real Anal. Exchange, 25(1) (1999/2000), 419–420.
  • V. I. Malykhin, Irresolvability is not descriptively good, privately circulated, 1996.
  • V. I. Malykhin, Something new about totally bounded groups, Mat. Zametki, 65 (1999), 474–476. (Russian).
  • J. C. Oxtoby, Measure and Category, Second Edition, Springer-Verlag (1980).
  • W. Poreda, E. Wagner-Bojakowska, and W. Wilczyński, A Category analogue of the density topology, Fund. Math., 125 (1985), 167–173.
  • W. Poreda, E. Wagner-Bojakowska, and W. Wilczyński, Remarks on $I$-density and $I$-approximately continuous functions, Comment. Math. Univ. Carolinae, 26(3) (1985), 553–563.
  • D. A. Rose, D. Janković, and T. R. Hamlett, Lower density topologies, Ann. New York Acad. Sci., Papers on General Topology and Applications, 704 (1993), 309–321.
  • David Rose, Kari Sizemore, and Ben Thurston, Strongly irresolvable spaces, Int. J. Math. Math. Sci., 2006 (2006), 1–12.
  • F. D. Tall, The density topology, Pac. J. Math., 67(1) (1976), 275–284.
  • Elżbieta Wagner-Bojakowska, Resolvability of $I$-density topology, Zeszyty Naukowe, 1(1) (2001), 35–37.
  • Renata Wiertelak, A generalization of the density topology with respect to category, Real Anal. Exchange, 32(1) (2006/2007), 273–286.
  • W. Wilczyński, Density Topologies, Chapter 15 in Handbook of Measure Theory, Ed. Endre Pap, Elsevier Sci. (2002), 675–702.
  • W. Wilczyński and W. Wojdowski, Complete density topology, Indagationes Mathematicae, 18(2) (2007), 295–302.
  • W. Wojdowski, A generalization of density topology, Real Anal. Exchange, 32(2) (2006/2007), 1–10.
  • W. Wojdowski, On generalization of the density topology on the real line, (to appear).