Open Access
2006 The geometry of Brownian surfaces
Rémi Léandre
Probab. Surveys 3: 37-88 (2006). DOI: 10.1214/154957806000000032

Abstract

Motivated by Segal’s axiom of conformal field theory, we do a survey on geometrical random fields. We do a history of continuous random fields in order to arrive at a field theoretical analog of Klauder’s quantization in Hamiltonian quantum mechanic by using infinite dimensional Airault-Malliavin Brownian motion.

Citation

Download Citation

Rémi Léandre. "The geometry of Brownian surfaces." Probab. Surveys 3 37 - 88, 2006. https://doi.org/10.1214/154957806000000032

Information

Published: 2006
First available in Project Euclid: 19 April 2006

zbMATH: 1189.60104
MathSciNet: MR2216962
Digital Object Identifier: 10.1214/154957806000000032

Subjects:
Primary: 60G60
Secondary: 81T40

Keywords: Airault-Malliavin equation , Segal’s axiom

Rights: Copyright © 2006 The Institute of Mathematical Statistics and the Bernoulli Society

Vol.3 • 2006
Back to Top