Pacific Journal of Mathematics

Linear functional equations and interpolation series.

Philip Davis

Article information

Source
Pacific J. Math. Volume 4, Number 4 (1954), 503-532.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1103044687

Zentralblatt MATH identifier
0057.10301

Mathematical Reviews number (MathSciNet)
MR0067360

Subjects
Primary: 46.0X

Citation

Davis, Philip. Linear functional equations and interpolation series. Pacific J. Math. 4 (1954), no. 4, 503--532. http://projecteuclid.org/euclid.pjm/1103044687.


Export citation

References

  • [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. (1950), 337-404.
  • [2] S. Banach, Theorie des operations line'aires, Warsaw, 1933.
  • [3] S. Bergman, Zur Theorie der Funktionen, die eine lineare partielleDifferential' gleichung befriedigen, Recueil Mathematique, nouv. ser. 2(44) (1937), 1169-1198.
  • [4] S. Bergman, Zur Theorie der Linearen Integral- und Funktionalgleichungenim Komplexen Gebiet, Bulletin de l'Institute de Mathematiques et Mecanique a l'Universite Koubycheff de Tomsk 1(1937), 242-256.
  • [5] S. Bergman, The kernel function and conformal mapping, Mathematical Surveys vol. 5, New York, 1950.
  • [6] S. Bergman and M. Schiffer, Kernel functions in mathematical physics, New York, 1953.
  • [7] P. Davis, On the applicabilityof linear differential operators of infinite order to functions of class L2(B), Amer. J. Math. 74 (1952), 475-491.
  • [8] P. Davis and J. L. Walsh, Representationsand extensionsof bounded linear functionals defined on classes of analytic functions, Trans. Amer. Math. Soc. 76 (1954), 190-206.
  • [9] P. Davis and H. Pollak, Linearfunctionals and analytic continuation problems, Pacific J. Math. 3 (1953), 47-72.
  • [10] W.F. Osgood, Funktionentheorie, Bd. Ill, Leipzig-Berlin, 1927.
  • [11] F. Riesz, Les systemes d' equations line'aires a une infinite'd'inconnues,Paris, 1913.
  • [12] J. L. Walsh and P.Davis, Interpolation and orthonormal systems,J. Analyse Math. 2(1952), 1-28.
  • [13] A. Wintner, A criterion for the non-existence of Lsolutions of a non-oscillating differential equation, London J. Math. 25(1950), 347-351.