Pacific Journal of Mathematics

Axiom schemata of strong infinity in axiomatic set theory.

Azriel Lévy

Article information

Source
Pacific J. Math. Volume 10, Number 1 (1960), 223-238.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1103038638

Zentralblatt MATH identifier
0201.32602

Mathematical Reviews number (MathSciNet)
MR0124205

Subjects
Primary: 02.63

Citation

Lévy, Azriel. Axiom schemata of strong infinity in axiomatic set theory. Pacific J. Math. 10 (1960), no. 1, 223--238. http://projecteuclid.org/euclid.pjm/1103038638.


Export citation

References

  • [1] H. Bachmann, TransfiniteZahlen, Berlin 1955.
  • [2] A. A. Fraenkel and J. Bar-Hillel, Foundations of set theory, Amsterdam 1958.
  • [3] D. Hubert and P. Bernays, Grundlagen der Mathematik,Part I, Berlin 1934.
  • [4] P. Mahlo, Tiber lineare transfiniteMengen,Berichte ber die Verhandlungen der Koniglich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematish-Physische Klasse, 63 (1911), 187-225.
  • [5] P. Mahlo, Zur Theorie und Anwendung der p^-Zahlen, ibid, 64 (1912), 108-112.
  • [6] P. Mahlo, Zur Theorie und Anwendung der po-Zahlen II, ibid, 65 (1913), 268-282.
  • [7] R. Montague and S. Feferman, The method of arithmetizationand some ofits applications, North Holland Pub. Co., to appear. See abstracts by R. Montague, Bull, of the A.M.S., 61 (1955), p. 172, 62 (1956), p. 260, Summariesof talksat theSummer Instituteof Symbolic Logic in 1957 at Cornell University, pp. 256-259.
  • [8] R. Montague and R. L. Vaught, Natural models of set theories, to appear in Fundamenta Mathematicae.
  • [9] A. Mostowski, An undecidable arithmeticalstatement, Fundamenta Mathematicae, 36 (1949), 143-164.
  • [10] A. Mostowski, Some impredicativedefinitions in the axiomatic set theory, ibid, 37 (1950), 111-124.
  • [11] A. Mostowski, On models of axiomatic systems, ibid, 39 (1952), 133-158.
  • [12] J. C. Shepherdson, Inner models for set theory, Journal of Symbolic Logic, Part 1-16 (1951), 161-190; Part II -17 (1952), 225-237; Part III-18 (1953), 145-167.
  • [13] E. Specker, Zur Axiomatikder Mengenlehre (Fundierugs und Auswahlaxiom),Zeitsch- rift fur mathematische Logik und Grundlagen der Mathematik, 3 (1957), 173-210.
  • [14] A. Tarski, Uber unerreichbare Kardinalzahlen,Fundamenta Mathemticae, 30 (1938), 68-89.
  • [15] A. Tarski, On well-ordered subsets of any set, ibid, 32 (1939), 176-183.
  • [16] A. Tarski, Notions of proper models for set theoris (abstract), Bulletin of the A.M.S., 62 (1956), p. 601.
  • [17] A. Tarski and R. L. Vaught, Arithmeticalextensions of relational systems, Compositio Mathematica, 13 (1957), 81-102.