Pacific Journal of Mathematics

Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers.

David C. Kay and Eugene W. Womble

Article information

Source
Pacific J. Math. Volume 38, Number 2 (1971), 471-485.

Dates
First available: 13 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102970059

Zentralblatt MATH identifier
0235.52001

Mathematical Reviews number (MathSciNet)
MR0310766

Subjects
Primary: 52A35: Helly-type theorems and geometric transversal theory

Citation

Kay, David C.; Womble, Eugene W. Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers. Pacific Journal of Mathematics 38 (1971), no. 2, 471--485. http://projecteuclid.org/euclid.pjm/1102970059.


Export citation

References

  • [1] L. Danzer, B. Grunbaum, V. Klee, Hetty's theorem and its relatives, Amer. Math. Soc, Proceedings of Symposia in Pure Mathematics, 7 (1963), 101-180.
  • [2] A. Dvoretzky, A converse of Hetty's theorem on convex sets, Pacific J. Math., 5 (1955), 345-350.
  • [3] J. Eckhoff, Der Satz von Radon in konvexen ProduktstrukturenI, Monatshefte fur Mathematik, 72 (1968), 303-314.
  • [4] J. W. Ellis, A general set-separation theorem, Duke Math. J., 19 (1952), 417-421.
  • [5] P. C. Hammer, Kuratowski'sclosure theorem, Nieuw Archief voor Wiskunde, 8 (1960), 74-80.
  • [6] P. C. Hammer,Extended topology: Caratheodory's theorem on convex hulls, Rendiconti del Circulo Mathematico de Palermo, 14 (1965), 34-42. 7.1Semispaces and the topology of convexity, Amer. Math. Soc, Proceedings of Symposia in Pure Mathematics, 7 (1963), 305-316.
  • [8] W. Koenen, The Kuratowskiclosure problem in the topology of convexity, Amer. Math. Monthly, 73 (1966), 704-708.
  • [9] F. W. Levi, On Hetty's theorem and the axioms of convexity, J. Indian Math. Soc, 15 (1951), 65-76.
  • [10] J. R. Reay, Caratheodory theorems in convex product structures, Pacific J. Math., 35 (1970), 227-230.