Pacific Journal of Mathematics

A converse to (Milnor-Kervaire theorem) $\times R$ etc.

Michael H. Freedman

Article information

Source
Pacific J. Math. Volume 82, Number 2 (1979), 357-369.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102784879

Mathematical Reviews number (MathSciNet)
MR551695

Zentralblatt MATH identifier
0459.57020

Subjects
Primary: 57R95: Realizing cycles by submanifolds

Citation

Freedman, Michael H. A converse to (Milnor-Kervaire theorem) $\times R$ etc. Pacific J. Math. 82 (1979), no. 2, 357--369. http://projecteuclid.org/euclid.pjm/1102784879.


Export citation

References

  • [1] S. Cappell and J. Shaneson, Singularitiesand immersions,Annals of Math., 1O5 (1977), 539-552.
  • [2] M. Freedman and R. Kirby, A geometric proof of Rochlin's theorem, Proc. of Sum- posium in Pure Math., Vol. XXXII, AMS; Part 2, (1978), 85-98.
  • [3] J. Milnor and M. Kevaire, On 2-spheres in ^-manifolds,Proc. Nat. Acad. Sci. U.S., 47 (1961), 1651-1657.
  • [4] A. Tristram, Some cobordism invariantsforlinks,Proc. Camb. Phil. Soc, 66 (1969), 251-264.
  • [5] C.T.C. Wall, Surgery on Compact Manifolds, Academic Press, 1970.
  • [6] C.T.C. Wall, Finitenessconditions forCW complexes, I, Ann. of Math., 81 (1965), 56-69.