Pacific Journal of Mathematics

Fredholm theory of partial differential equations on complete Riemannian manifolds.

Robert C. McOwen

Article information

Source
Pacific J. Math. Volume 87, Number 1 (1980), 169-185.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102780323

Zentralblatt MATH identifier
0457.35084

Mathematical Reviews number (MathSciNet)
MR590874

Subjects
Primary: 58G15
Secondary: 35B99: None of the above, but in this section

Citation

McOwen, Robert C. Fredholm theory of partial differential equations on complete Riemannian manifolds. Pacific Journal of Mathematics 87 (1980), no. 1, 169--185. http://projecteuclid.org/euclid.pjm/1102780323.


Export citation

References

  • [1] T. Aubin, Espaces de Sobolev sur les varietes riemanniennes, preprint.
  • [2] M. Cantor, Spaces of functions with assymptotic conditions on Rn, Indiana Univ. Math. J., 24, No. 9, (1975),897-902.
  • [3] H. O. Cordes, Self-adjointness of powers of elliptic operators on noncompact mani- folds, Math. Ann., 195 (1972),257-272.
  • [4] H. 0. Cordes and E. Herman, Gefand theory of pseudo-differential operators, Amer. J. Math., 90 (1968), 681-717.
  • [5] H. O. Cordes and R. C. McOwen, The C*-algebraof a singular elliptic problem on a noncompact riemannian manifold, Math. Zeit., 153 (1977), 101-116.
  • [6] H. O. Cordes and R. C. McOwen, Remarks on singular elliptic theory for complete riemannianmanifolds,
  • [7] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1926.
  • [8] E. Herman, The symbol of the algebra of singularintegral operators, J. Math. Mech., 15 (1966), 147-156.
  • [9] R. Jackson, Canonical operators and lower-order symbols, Amer. Math. Soc. Memoirs, (1973).
  • [10] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, New- York-London, Interscience, 1963.
  • [11] R. C. McOwen, The behavior of the laplacian on weighted Sobolev spaces, Comm. Pure and App. Math., (to appear).
  • [12] C. E. Rickart, Banach Algebras, Princeton, Van Nostrand, I960.
  • [13] R. T. Seeley, Integro-differentialoperators on vector bundles, Trans. Amer. Math. Soc, 117 (1965), 167-204.