Pacific Journal of Mathematics

A note on linearly ordered net spaces.

James R. Boone

Article information

Source
Pacific J. Math. Volume 98, Number 1 (1982), 25-35.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102734382

Zentralblatt MATH identifier
0547.54026

Mathematical Reviews number (MathSciNet)
MR644935

Subjects
Primary: 54F05: Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces [See also 06B30, 06F30]
Secondary: 06F99: None of the above, but in this section 54D55: Sequential spaces

Citation

Boone, James R. A note on linearly ordered net spaces. Pacific J. Math. 98 (1982), no. 1, 25--35. http://projecteuclid.org/euclid.pjm/1102734382.


Export citation

References

  • [1] A. Arkangelskii and S. P. Franklin, Ordinal invariantsfortopological spaces, Michigan Math. J., 15 (1968), 313-320.
  • [2] S. A. Baber and J. R. Boone, Test spaces for infinite sequential order, submitted.
  • [3] S. A. Baber and J. R. Boone,Test spaces for -net spaces, in processing.
  • [4] J. R. Boone, S. W. Davis and G. Gruenhage, Cardinal functionsfor k-spaces, Proceedings of AMS, 68 (1978), 355-358.
  • [5] R. C. Briggs, Preparacompactness and ^-preparacompactnessin q-spaces, Colloquium Mathematicum, 27 (1973), 227-235.
  • [6] S. W. Davis, Spaces with linearly ordered bases, Topology Proceedings 3 (1978), 37-51.
  • [7] S. W. Davis and S. C. Smith, The paracompactness of preparacompact spaces, to appear in Topology Proceedings.
  • [8] K. M. Dvei, P. R. Meyer and M. Rajagopalan, When does contable compactness imply sequential compactness?, General Topology and its Applications, 6 (1976), 279-289.
  • [9] S. P. Franklin, Natural covers, Compositio Mathematica, 21 (1969), 253-261.
  • [10] S. P. Franklin, Spaces in which sequences suffice, Fundamenta mathematica, 57 (1975), 107-115.
  • [11] S. Nitta, Strong-preparacompactness in quasi-k-spaces, Mathematica Japanicae, 19 (1974), 291-296.
  • [12] J. E. Vaughan, Convergence, closed projections and compactness, Proceedings of AMS, 51 (1975), 496-476.