Pacific Journal of Mathematics

A dual geometric characterization of Banach spaces not containing $l_{1}$.

Elias Saab and Paulette Saab

Article information

Source
Pacific J. Math. Volume 105, Number 2 (1983), 415-425.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102723337

Zentralblatt MATH identifier
0505.46013

Zentralblatt MATH identifier
0465.46009

Mathematical Reviews number (MathSciNet)
MR691612

Subjects
Primary: 46B20: Geometry and structure of normed linear spaces

Citation

Saab, Elias; Saab, Paulette. A dual geometric characterization of Banach spaces not containing $l_{1}$. Pacific J. Math. 105 (1983), no. 2, 415--425. http://projecteuclid.org/euclid.pjm/1102723337.


Export citation

References

  • [1] R. Baire, Sur les fonctions des variables, reelles, Ann. Math. Pure Appl., Serie 3, t.3, (1899), 16-30.
  • [2] G. Choquet, Lecture on analysis, Vol. II, Benjamin, New York, (1969).
  • [3] W. J. David, T. Figiel, W. B. Johnson and A. Pelczynski, Factoring weakly compact operators, J. Funct. Anal., 17 (1974), 311-327.
  • [4] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys 15, American Math. Soc, Providence, (1977).
  • [5] N. Ghoussoub and E. Saab, On the weak Radon-Nikodym property, Proc. Amer. Math. Soc, 81 (1981), 81-84.
  • [6] R. Haydon, Some more characterizationsof Banachspacescontainingl, Math Proc. Cambridge Philos. Soc,80 (1976), 269-276.
  • [7] L. Janicka, Wlasnosci Typu Radona-Nikodymadla Przestrzeni Banacha, Thesis, 1978, Wroclaw.
  • [8] K. Musial, The weak Radon-Nikodymproperty for Banach spaces, Studia Math., 64 (1978), 151-174.
  • [9] I. Namioka, Neighborhoods of extreme points, Israel J. Math., 5 (1967), 145-152.
  • [10] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J., 42(1975),735-750.
  • [11] E. Odell and H. P. Rosenthal, A double dual characterization of separable Banach spaces containing l, Israel J. Math., 20 (1975), 375-384.
  • [12] L. H. Riddle, E. Saab and J. J. Uhl,Jr., Sets with weak Radon-Nikodymproperty in dual Banach spaces, to appear in Indiana Univ. Math. J,
  • [13] H. P. Rosenthal, Pointwise compact subsets of first Baire class, Amer. J. Math., 99 (1977), 362-378.
  • [14] E. Saab, A characterization of w*-compact convex sets having the Radon-Nikodym property, Bull. Sci. Math., (2) 104 (1980), 79-88.
  • [15] C. Stegall, The Radon-Nikodym property in conjugate Banach spaces II, Trans. Amer. Math. Soc, 264 (1981), 507-519.