Pacific Journal of Mathematics

A general local ergodic theorem in $L_1$.

M. A. Akcoglu and M. Falkowitz

Article information

Source
Pacific J. Math. Volume 119, Number 2 (1985), 257-264.

Dates
First available in Project Euclid: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102706154

Zentralblatt MATH identifier
0579.47004

Mathematical Reviews number (MathSciNet)
MR803118

Subjects
Primary: 47A35: Ergodic theory [See also 28Dxx, 37Axx]
Secondary: 28D05: Measure-preserving transformations

Citation

Akcoglu, M. A.; Falkowitz, M. A general local ergodic theorem in $L_1$. Pacific J. Math. 119 (1985), no. 2, 257--264. http://projecteuclid.org/euclid.pjm/1102706154.


Export citation

References

  • [I] M. A. Akcoglu and R. V. Chacon, A localratio theorem, Canad.J. Math., 22 (1970), 545-552.
  • [2] M. A. Akcoglu and A. del Junco, Differentiationof n-dimensionaladditive processes, Canad. J. Math., 33 (1981), 749-768.
  • [3] M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes, Math. Z., 163 (1978), 199-210.
  • [4] N. Dunford and J. T. Schwartz, Linear Operators,Part I, Interscience Publishers Inc., New York, 1958.
  • [5] C. Kipins, Majoration des semi-groupes de contractions de L et applications, Ann. Inst. Poincaresect. B, 10 (1974), 369-384.
  • [6] U. Krengel,A localergodic theorem, Invent. Math., 6 (1969), 329-333.
  • [7] Y. Kubokawa, Ergodic theoremsfor contractionsemi-groups, J. Math. Soc.Japan, 27 (1975), 184-193.
  • [8] D. S. Ornstein, The sums of iterates of a positive operator, Advances in Prob. and related topics,2 (1970), 87-115.
  • [9] R. Sato, A note on a local ergodictheorem, Comment. Math. Univ. Carolinae, 16 (1975), 1-11.
  • [10] R. Sato, Contraction semi-groups in Lebesgue space, Pacific J. Math., 78 (1978), 251-259.
  • [II] N. Wiener, The ergodictheorem, Duke Math. J., 5 (1939), 1-18.