Pacific Journal of Mathematics

On the Tor functor and some classes of abelian groups.

Patrick Keef

Article information

Source
Pacific J. Math. Volume 132, Number 1 (1988), 63-84.

Dates
First available: 8 December 2004

Permanent link to this document
http://projecteuclid.org/euclid.pjm/1102689795

Zentralblatt MATH identifier
0617.20033

Mathematical Reviews number (MathSciNet)
MR929583

Subjects
Primary: 20K10: Torsion groups, primary groups and generalized primary groups
Secondary: 18G15: Ext and Tor, generalizations, Künneth formula [See also 55U25] 20K40: Homological and categorical methods

Citation

Keef, Patrick. On the Tor functor and some classes of abelian groups. Pacific Journal of Mathematics 132 (1988), no. 1, 63--84. http://projecteuclid.org/euclid.pjm/1102689795.


Export citation

References

  • [I] L. Fuchs, Infinite Abelian Groups,Vol. 2, Academic Press, New York, 1973.
  • [2] L. Fuchs and P. Hill, The balanced-projective dimension of abelian p-group, Trans. Amer. Math. Soc, 293 (1986), 99-112.
  • [3] P. Hill, Isotype subgroups of direct sums of countable groups, Illinois J. Math., 13(1969), 281-290.
  • [4] P. Hill, Isotype Subgroups of Totally ProjectiveGroups,Lecture Notes in Math- ematics 874. Berlin-Heidelberg-New York: Springer 1981.
  • [5] P. Hill, When Tor( B) is a direct sum of cyclicgroups, Pacific J. Math., 107 (1983), 383-392.
  • [6] P. Hill, The balance of Tor, Math. Zeit., no. 2, 182 (1983), 179-188.
  • [7] P. Hill and C. Megibben, On the theory and classificationof Abelian p-groups, Math. Zeit., 190(1985), 17-38.
  • [8] J. Irwin, T. Snabb and T. Cellars, The torsion product of totally projective p- groups,Comment. Math. Univ. St. Pauli, 29 (1980), 1-5.
  • [9] C. Megibben, A generalization of the classicaltheory of primary groups,Tohoku Math. J., 22 (1970), 347-356.
  • [10] C. Megibben, On Pa-high injectives,Math. Zeit., 122 (1968), 349-360.
  • [II] R. Nunke, Homology and direct sums of countable groups, Math. Zeit., 101 (1967), 182-212.
  • [12] R. Nunke, On the structure of Tor II, Pacific J. Math., 22 (1967), 453-464.
  • [13] F. Richman, Computing heights in Tor, Houston J. Math., 3 (1977), 267-270.