Open Access
November 2012 A note on linear independence of polylogarithms over the rationals
Noriko Hirata-Kohno, Hironori Okada
Proc. Japan Acad. Ser. A Math. Sci. 88(9): 156-161 (November 2012). DOI: 10.3792/pjaa.88.156

Abstract

In this article, we give a new lower bound for the dimension of the linear space over the rationals spanned by 1 and values of polylogarithmic functions at a non-zero rational number. Our proof uses Padé approximation following the argument of T. Rivoal, however we adapt a new linear independence criterion due to S. Fischler and W. Zudilin. We also present an example of the linear space of dimension $\geqslant 3$ over $\mathbf{Q}$, which is generated by 1 and polylogarithms.

Citation

Download Citation

Noriko Hirata-Kohno. Hironori Okada. "A note on linear independence of polylogarithms over the rationals." Proc. Japan Acad. Ser. A Math. Sci. 88 (9) 156 - 161, November 2012. https://doi.org/10.3792/pjaa.88.156

Information

Published: November 2012
First available in Project Euclid: 6 November 2012

zbMATH: 1286.11108
MathSciNet: MR3000895
Digital Object Identifier: 10.3792/pjaa.88.156

Subjects:
Primary: 11G55 , 11J72 , 41A21

Keywords: Irrationality , linear independence , Padé approximation , polylogarithms

Rights: Copyright © 2012 The Japan Academy

Vol.88 • No. 9 • November 2012
Back to Top