Open Access
December 2008 Growth functions associated with Artin monoids of finite type
Kyoji Saito
Proc. Japan Acad. Ser. A Math. Sci. 84(10): 179-183 (December 2008). DOI: 10.3792/pjaa.84.179

Abstract

We prove that the growth functions associated with Artin-monoids of finite type are rational functions whose numerators is equal to 1. We give an explicit formula for the denominator polynomial $N_{M}(t)$ and give three conjectures on it: 1. $N_{M}(t)$ is irreducible up to a factor 1-t, 2. there are $l$-1 real distinct roots of $N_{M}(t)$ on the interval (0,1), and 3. the smallest real root on (0,1) is the unique smallest absolute values of all roots of $N_{M}(t)$.

Citation

Download Citation

Kyoji Saito. "Growth functions associated with Artin monoids of finite type." Proc. Japan Acad. Ser. A Math. Sci. 84 (10) 179 - 183, December 2008. https://doi.org/10.3792/pjaa.84.179

Information

Published: December 2008
First available in Project Euclid: 2 December 2008

zbMATH: 1159.20330
MathSciNet: MR2483563
Digital Object Identifier: 10.3792/pjaa.84.179

Subjects:
Primary: 16G10
Secondary: 16G20 , 16G21

Keywords: Artin group , Artin monoid , growth function , zeros of polynomial

Rights: Copyright © 2008 The Japan Academy

Vol.84 • No. 10 • December 2008
Back to Top