Abstract
In this note we give a new approach to the rationality problem of some Cremona transformation. Let $k$ be any field, $k(x,y)$ be the rational function field of two variables over $k$. Let $\sigma$ be a $k$-automorphism of $k(x,y)$ defined by \begin{align*} &\sigma(x) = \frac{-x(3x-9y-y^{2})^{3}}{(27x+2x^{2}+9xy+2xy^{2}-y^{3})^{2}},\quad & \qquad \sigma(y) = \frac{-(3x+y^{2})(3x-9y-y^{2})}{27x+2x^{2}+9xy+2xy^{2}-y^{3}}. \end{align*} Theorem. The fixed field $k(x,y)^{\langle\sigma\rangle}$ is rational (= purely transcendental) over $k$. Embodied in a new proof of the above theorem are several general guidelines for solving the rationality problem of Cremona transformations, which may be applied elsewhere.
Citation
Akinari Hoshi. Ming-chang Kang. "A rationality problem of some Cremona transformation." Proc. Japan Acad. Ser. A Math. Sci. 84 (8) 133 - 137, October 2008. https://doi.org/10.3792/pjaa.84.133
Information