Open Access
March 2007 Tschirnhausen transformation of a cubic generic polynomial and a $2$-dimensional involutive Cremona transformation
Akinari Hoshi, Katsuya Miyake
Proc. Japan Acad. Ser. A Math. Sci. 83(3): 21-26 (March 2007). DOI: 10.3792/pjaa.83.21

Abstract

We study the field isomorphism problem for a cubic generic polynomial $X^3+sX+s$ via Tschirnhausen transformation. Through this process, there naturally appears a $2$-dimensional involutive Cremona transformation. We show that the fixed field under the action of the transformation is purely transcendental over an arbitrary base field.

Citation

Download Citation

Akinari Hoshi. Katsuya Miyake. "Tschirnhausen transformation of a cubic generic polynomial and a $2$-dimensional involutive Cremona transformation." Proc. Japan Acad. Ser. A Math. Sci. 83 (3) 21 - 26, March 2007. https://doi.org/10.3792/pjaa.83.21

Information

Published: March 2007
First available in Project Euclid: 9 April 2007

zbMATH: 1126.14018
MathSciNet: MR2317305
Digital Object Identifier: 10.3792/pjaa.83.21

Subjects:
Primary: 12F12 , 12F20 , 14E07 , 14E08

Keywords: cubic generic polynomial , field isomorphism problem , general Noether problem , involutive Cremona transformation , Tschirnhausen transformation

Rights: Copyright © 2007 The Japan Academy

Vol.83 • No. 3 • March 2007
Back to Top