Open Access
March 2000 On complex-tangential curves on the unit sphere on $\mathbf {C}^2$ and homogeneous polynomials
Hong Oh Kim
Proc. Japan Acad. Ser. A Math. Sci. 76(3): 39-43 (March 2000). DOI: 10.3792/pjaa.76.39

Abstract

We show that a closed complex-tangential $C^2$-curve $\gamma$ of constannt curvature on the unit sphere $\partial B_2$ of $\mathbf{C}^2$ is unitarily equivalent to \[ \gamma_{l,m}(t) = \left( \sqrt{l/d} e^{it\sqrt{m/l}}, \sqrt{m/d} e^{-it\sqrt{l/m}} \right) \] where $d = l + m$, $l, m \geq 1$ integers. As an application, we propose a conjecture that if a homogeneous polynomial $\pi$ on $\mathbf{C}^2$ admits a complex-tangential analytic curve on $\partial B_2$ with $\pi(\gamma(t)) = 1$ then $\pi$ is unitarily equivalent to a monomial \[ \pi_{l,m}(z,w) = \sqrt{\frac{d^d}{l^l m^m}} z^l w^m \] where $l, m \geq 1$ integers and show that the conjecture is true for homogeneous polynomial of degree $\leq 5$. A relevant conjecture and partial answer on the maximum modulus set of a homogeneous polynomial $\pi$ on $\mathbf{C}^2$ is also given.

Citation

Download Citation

Hong Oh Kim. "On complex-tangential curves on the unit sphere on $\mathbf {C}^2$ and homogeneous polynomials." Proc. Japan Acad. Ser. A Math. Sci. 76 (3) 39 - 43, March 2000. https://doi.org/10.3792/pjaa.76.39

Information

Published: March 2000
First available in Project Euclid: 23 May 2006

zbMATH: 0968.32003
MathSciNet: MR1762069
Digital Object Identifier: 10.3792/pjaa.76.39

Subjects:
Primary: 14P05 , 32C05

Keywords: Complex tangential curve , homogeneous polynomial , maximum mudulus set

Rights: Copyright © 2000 The Japan Academy

Vol.76 • No. 3 • March 2000
Back to Top