Proceedings of the Japan Academy, Series A, Mathematical Sciences

Bernoulli numbers and multiple zeta values

Takashi Nakamura

Full-text: Open access

Abstract

We show an apparently new expression of Bernoulli numbers, simultaneously we give an expression of multiple zeta values $\zeta(2m, 2m, \dots, 2m)$.

Article information

Source
Proc. Japan Acad. Ser. A Math. Sci. Volume 81, Number 2 (2005), 21-22.

Dates
First available in Project Euclid: 18 May 2005

Permanent link to this document
http://projecteuclid.org/euclid.pja/1116442054

Mathematical Reviews number (MathSciNet)
MR2126071

Zentralblatt MATH identifier
02243062

Digital Object Identifier
doi:10.3792/pjaa.81.21

Subjects
Primary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72}

Keywords
Bernoulli numbers multiple zeta values

Citation

Nakamura, Takashi. Bernoulli numbers and multiple zeta values. Proceedings of the Japan Academy, Series A, Mathematical Sciences 81 (2005), no. 2, 21--22. doi:10.3792/pjaa.81.21. http://projecteuclid.org/euclid.pja/1116442054.


Export citation

References

  • H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), 44–51.
  • D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics, Vol. II (Paris, 1992), 497–512, Progr. Math., 120, Birkhäuser, Basel, 1994.
  • D. Zagier, Multiple zeta values. (Unpublished manuscript).