Open Access
October 2015 The $S^{1}$-equivariant cohomology rings of $(n - k, k)$ Springer varieties
Tatsuya Horiguchi
Osaka J. Math. 52(4): 1051-1063 (October 2015).

Abstract

The main result of this note gives an explicit presentation of the $S^{1}$-equivariant cohomology ring of the $(n-k, k)$ Springer variety (in type $A$) as a quotient of a polynomial ring by an ideal $I$, in the spirit of the well-known Borel presentation of the cohomology of the flag variety.

Citation

Download Citation

Tatsuya Horiguchi. "The $S^{1}$-equivariant cohomology rings of $(n - k, k)$ Springer varieties." Osaka J. Math. 52 (4) 1051 - 1063, October 2015.

Information

Published: October 2015
First available in Project Euclid: 18 November 2015

zbMATH: 1350.55011
MathSciNet: MR3426628

Subjects:
Primary: 55N91
Secondary: 05A17

Rights: Copyright © 2015 Osaka University and Osaka City University, Departments of Mathematics

Vol.52 • No. 4 • October 2015
Back to Top