Open Access
March 2011 Computing certain Gromov-Witten invariants of the crepant resolution of P(1,3,4,4)
Samuel Boissière, Étienne Mann, Fabio Perroni
Nagoya Math. J. 201: 1-22 (March 2011). DOI: 10.1215/00277630-2010-015

Abstract

We prove a formula computing the Gromov-Witten invariants of genus zero with three marked points of the resolution of the transversal A3-singularity of the weighted projective space P(1,3,4,4) using the theory of deformations of surfaces with An-singularities. We use this result to check Ruan’s conjecture for the stack P(1,3,4,4).

Citation

Download Citation

Samuel Boissière. Étienne Mann. Fabio Perroni. "Computing certain Gromov-Witten invariants of the crepant resolution of P(1,3,4,4)." Nagoya Math. J. 201 1 - 22, March 2011. https://doi.org/10.1215/00277630-2010-015

Information

Published: March 2011
First available in Project Euclid: 11 February 2011

zbMATH: 1230.53081
MathSciNet: MR2772168
Digital Object Identifier: 10.1215/00277630-2010-015

Subjects:
Primary: 14E46 , 14J33 , 14M25 , 53D45

Rights: Copyright © 2011 Editorial Board, Nagoya Mathematical Journal

Vol.201 • March 2011
Back to Top