Nagoya Mathematical Journal

Theory of prehomogeneous vector spaces (algebraic part)---the English translation of Sato's lecture from Shintani's noteNotes by Takuro Shintani, Translated from the Japanese by Masakazu Muro

Mikio Sato

Full-text: Open access

Article information

Source
Nagoya Math. J. Volume 120 (1990), 1-34.

Dates
First available: 14 June 2005

Permanent link to this document
http://projecteuclid.org/euclid.nmj/1118782193

Mathematical Reviews number (MathSciNet)
MR1086566

Zentralblatt MATH identifier
0715.22014

Subjects
Primary: 32M12: Almost homogeneous manifolds and spaces [See also 14M17]
Secondary: 11M41: Other Dirichlet series and zeta functions {For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72} 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]

Citation

Sato, Mikio. Theory of prehomogeneous vector spaces (algebraic part)---the English translation of Sato's lecture from Shintani's note. Nagoya Mathematical Journal 120 (1990), 1--34. http://projecteuclid.org/euclid.nmj/1118782193.


Export citation

References

  • [Al] Aomoto, K., Finiteness of a cohomology associated with certain Jackson integrals, preprint 1989.
  • [A2] Aomoto, Connection coefficients for Jackson integrals of extended Selberg type, preprint 1989.
  • [Sa-Ki] Sato, M.andKimura, T.,A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155.
  • [Sa-Shl] Sato, M. and Shintani, T., Gaikinshitsu bekutoru kuukan no riron (Theory of prehomogeneous vector spaces) (in Japanese), Sugaku no Ayumi, 15-1 (1970), 85-157.
  • [Sa-Sh2] Sato, Onzeta functions associated with prehomogeneous vector spaces, Ann. of Math., 100 (1974), 131-170.
  • [Sa-Ka-ki-Os] Sato, M.,Kashiwara, M.,Kimura, T. and Oshima, T., Micro-local analy- sis of prehomogeneous vector spaces, Invent. Math., 62 (1980), 117-179. RIMS, Kyoto University Kyoto 606 Japan