Open Access
1999 Twisted Maaß-Koecher series and spinor zeta functions
Stefan Breulmann, Winfried Kohnen
Nagoya Math. J. 155: 153-160 (1999).

Abstract

It is shown that a Siegel-Hecke eigenform of integral weight $k$ and genus 2 is uniquely determined by its Fourier coefficients indexed by $nT$ where $T$ runs over all half-integral positive definite primitive matrices of size 2 and $n$ over all squarefree positive integers. The proof uses analytic arguments involving Koecher-Maaß series and spinor zeta functions.

Citation

Download Citation

Stefan Breulmann. Winfried Kohnen. "Twisted Maaß-Koecher series and spinor zeta functions." Nagoya Math. J. 155 153 - 160, 1999.

Information

Published: 1999
First available in Project Euclid: 27 April 2005

zbMATH: 0936.11030
MathSciNet: MR1711371

Subjects:
Primary: 11F46
Secondary: 11F66

Rights: Copyright © 1999 Editorial Board, Nagoya Mathematical Journal

Vol.155 • 1999
Back to Top