Open Access
2015 Halldén Completeness for Relevant Modal Logics
Takahiro Seki
Notre Dame J. Formal Logic 56(2): 333-350 (2015). DOI: 10.1215/00294527-2864334

Abstract

Halldén completeness closely resembles the relevance property. To prove Halldén completeness in terms of Kripke-style semantics, the van Benthem–Humberstone theorem is often used. In relevant modal logics, the Halldén completeness of Meyer–Fuhrmann logics has been obtained using the van Benthem–Humberstone theorem. However, there remain a number of Halldén-incomplete relevant modal logics. This paper discusses the Halldén completeness of a wider class of relevant modal logics, namely, those with some Sahlqvist axioms.

Citation

Download Citation

Takahiro Seki. "Halldén Completeness for Relevant Modal Logics." Notre Dame J. Formal Logic 56 (2) 333 - 350, 2015. https://doi.org/10.1215/00294527-2864334

Information

Published: 2015
First available in Project Euclid: 17 April 2015

zbMATH: 1339.03020
MathSciNet: MR3337384
Digital Object Identifier: 10.1215/00294527-2864334

Subjects:
Primary: 03B45
Secondary: 03B47

Keywords: Halldén completeness , relevant modal logics , Routley–Meyer semantics , Sahlqvist formulas , van Benthem–Humberstone theorem

Rights: Copyright © 2015 University of Notre Dame

Vol.56 • No. 2 • 2015
Back to Top