Open Access
2010 An Extension of van Lambalgen's Theorem to Infinitely Many Relative 1-Random Reals
Kenshi Miyabe
Notre Dame J. Formal Logic 51(3): 337-349 (2010). DOI: 10.1215/00294527-2010-020
Abstract

Van Lambalgen's Theorem plays an important role in algorithmic randomness, especially when studying relative randomness. In this paper we extend van Lambalgen's Theorem by considering the join of infinitely many reals which are random relative to each other. In addition, we study computability of the reals in the range of Omega operators. It is known that Ω ϕ is high. We extend this result to that Ω ϕ ( n ) is high n . We also prove that there exists A such that, for each n, the real Ω M A is high n for some universal Turing machine M by using the extended van Lambalgen's Theorem.

References

1.

[1] Buhrman, H., and L. Longpré, "Compressibility and resource bounded measure", pp. 13--24 in STACS 96 (Grenoble, 1996), vol. 1046 of Lecture Notes in Computer Science, Springer, Berlin, 1996.  MR1462082 1015.68082[1] Buhrman, H., and L. Longpré, "Compressibility and resource bounded measure", pp. 13--24 in STACS 96 (Grenoble, 1996), vol. 1046 of Lecture Notes in Computer Science, Springer, Berlin, 1996.  MR1462082 1015.68082

2.

[2] Buhrman, H., D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss, "A generalization of resource-bounded measure, with application to the BPP" vs. EXP problem, SIAM Journal on Computing, vol. 30 (2000), pp. 576--601.  MR1769372 0963.68230 10.1137/S0097539798343891[2] Buhrman, H., D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss, "A generalization of resource-bounded measure, with application to the BPP" vs. EXP problem, SIAM Journal on Computing, vol. 30 (2000), pp. 576--601.  MR1769372 0963.68230 10.1137/S0097539798343891

3.

[3] Downey, R., and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, Berlin, 2008.[3] Downey, R., and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, Berlin, 2008.

4.

[4] Downey, R., D. R. Hirschfeldt, J. S. Miller, and A. Nies, "Relativizing Chaitin's halting probability", Journal of Mathematical Logic, vol. 5 (2005), pp. 167--92.  MR2188515 1093.03025 10.1142/S0219061305000468[4] Downey, R., D. R. Hirschfeldt, J. S. Miller, and A. Nies, "Relativizing Chaitin's halting probability", Journal of Mathematical Logic, vol. 5 (2005), pp. 167--92.  MR2188515 1093.03025 10.1142/S0219061305000468

5.

[5] Kučera, A., "Measure, $\Pi^0_1$"-classes and complete extensions of $\rm PA$, pp. 245--59 in Recursion Theory Week (Oberwolfach, 1984), vol. 1141 of Lecture Notes in Mathematics, Springer, Berlin, 1985.  MR820784 0622.03031[5] Kučera, A., "Measure, $\Pi^0_1$"-classes and complete extensions of $\rm PA$, pp. 245--59 in Recursion Theory Week (Oberwolfach, 1984), vol. 1141 of Lecture Notes in Mathematics, Springer, Berlin, 1985.  MR820784 0622.03031

6.

[6] van Lambalgen, M., Random Sequences, Ph.D. thesis, University of Amsterdam, Amsterdam, 1987. 0628.60001[6] van Lambalgen, M., Random Sequences, Ph.D. thesis, University of Amsterdam, Amsterdam, 1987. 0628.60001

7.

[7] Li, M., and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 3d edition, Graduate Texts in Computer Science. Springer, New York, 2008. Also second edition (1997).  MR2494387 MR1438307 1185.68369 0866.68051[7] Li, M., and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 3d edition, Graduate Texts in Computer Science. Springer, New York, 2008. Also second edition (1997).  MR2494387 MR1438307 1185.68369 0866.68051

8.

[8] Mayordomo, E., Contributions to the Study of Resource-Bounded Measure, Ph.D. thesis, Universidad Polytécnica de Catalunya, Barcelona, 1994.[8] Mayordomo, E., Contributions to the Study of Resource-Bounded Measure, Ph.D. thesis, Universidad Polytécnica de Catalunya, Barcelona, 1994.

9.

[9] Nies, A., Computability and Randomness, vol. 51 of Oxford Logic Guides, Oxford University Press, Oxford, 2009.  MR2548883 1169.03034[9] Nies, A., Computability and Randomness, vol. 51 of Oxford Logic Guides, Oxford University Press, Oxford, 2009.  MR2548883 1169.03034

10.

[10] Odifreddi, P., Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers, vol. 125 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1989.  MR982269 0661.03029[10] Odifreddi, P., Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers, vol. 125 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1989.  MR982269 0661.03029

11.

[11] Odifreddi, P. G., Classical Recursion Theory. Vol. II, vol. 143 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1999.  MR1718169 0931.03057[11] Odifreddi, P. G., Classical Recursion Theory. Vol. II, vol. 143 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1999.  MR1718169 0931.03057

12.

[12] Schnorr, C.-P., "A unified approach to the definition of random sequences", Mathematical Systems Theory, vol. 5 (1971), pp. 246--58.  MR0354328 0227.62005 10.1007/BF01694181[12] Schnorr, C.-P., "A unified approach to the definition of random sequences", Mathematical Systems Theory, vol. 5 (1971), pp. 246--58.  MR0354328 0227.62005 10.1007/BF01694181

13.

[13] Soare, R. I., Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987.  MR882921 0623.03042 0667.03030[13] Soare, R. I., Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987.  MR882921 0623.03042 0667.03030

14.

[14] Ville, J., Étude Critique de la Notion du Collectif, vol. 3 of Monographies des Probabilités, Gauthier-Villars, Paris, 1939.  0021.14601 0021.14505[14] Ville, J., Étude Critique de la Notion du Collectif, vol. 3 of Monographies des Probabilités, Gauthier-Villars, Paris, 1939.  0021.14601 0021.14505
Copyright © 2010 University of Notre Dame
Kenshi Miyabe "An Extension of van Lambalgen's Theorem to Infinitely Many Relative 1-Random Reals," Notre Dame Journal of Formal Logic 51(3), 337-349, (2010). https://doi.org/10.1215/00294527-2010-020
Published: 2010
Vol.51 • No. 3 • 2010
Back to Top