Notre Dame Journal of Formal Logic

A Note on Weakly O-Minimal Structures and Definable Completeness

Alfred Dolich

Abstract

We consider the extent to which certain properties of definably complete structures may persist in structures which are not definably complete, particularly in the weakly o-minimal structures.

Article information

Source
Notre Dame J. Formal Logic Volume 48, Number 2 (2007), 281-292.

Dates
First available in Project Euclid: 16 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1179323268

Digital Object Identifier
doi:10.1305/ndjfl/1179323268

Mathematical Reviews number (MathSciNet)
MR2306397

Zentralblatt MATH identifier
1146.03022

Subjects
Primary: 03C64: Model theory of ordered structures; o-minimality
Secondary: 03C52: Properties of classes of models

Keywords
o-minimal weakly o-minimal

Citation

Dolich, Alfred. A Note on Weakly O-Minimal Structures and Definable Completeness. Notre Dame J. Formal Logic 48 (2007), no. 2, 281--292. doi:10.1305/ndjfl/1179323268. http://projecteuclid.org/euclid.ndjfl/1179323268.


Export citation

References

  • [1] Baisalov, Y., and B. Poizat, "Paires de structures o-minimales", The Journal of Symbolic Logic, vol. 63 (1998), pp. 570--78.
  • [2] Chatzidakis, Z., and A. Pillay, "Generic structures and simple theories", Annals of Pure and Applied Logic, vol. 95 (1998), pp. 71--92.
  • [3] Cherlin, G., and M. A. Dickmann, "Real closed rings. II". Model theory, Annals of Pure and Applied Logic, vol. 25 (1983), pp. 213--31.
  • [4] Dolich, A., C. Miller, and C. Steinhorn, "O-minimal open cores", in preparation.
  • [5] Dougherty, R., and C. Miller, "Definable Boolean combinations of open sets are Boolean combinations of open definable sets", Illinois Journal of Mathematics, vol. 45 (2001), pp. 1347--50.
  • [6] van den Dries, L., "$T$"-convexity and tame extensions. II", The Journal of Symbolic Logic, vol. 62 (1997), pp. 14--34.
  • [7] van den Dries, L., and A. H. Lewenberg, "$T$"-convexity and tame extensions", The Journal of Symbolic Logic, vol. 60 (1995), pp. 74--102.
  • [8] Macpherson, D., D. Marker, and C. Steinhorn, "Weakly o-minimal structures and real closed fields", Transactions of the American Mathematical Society, vol. 352 (2000), pp. 5435--83 (electronic).
  • [9] Marker, D., "Omitting types in $\mathcalO$"-minimal theories, The Journal of Symbolic Logic, vol. 51 (1986), pp. 63--74.
  • [10] Mellor, T., "Imaginaries in real closed valued fields I", preprint available at http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/RAAG/preprints/0% 074.html.
  • [11] Miller, C., "Expansions of dense linear orders with the intermediate value property", The Journal of Symbolic Logic, vol. 66 (2001), pp. 1783--90.
  • [12] Miller, C., and P. Speissegger, "Expansions of the real line by open sets: O-minimality and open cores", Fundamenta Mathematicae, vol. 162 (1999), pp. 193--208.
  • [13] Onshuus, A., "th-forking, algebraic independence and examples of rosy theories", preprint available at http://arxiv.org/abs/math.LO/030% 6003.
  • [14] Pillay, A., An Introduction to Stability Theory, vol. 8 of Oxford Logic Guides, The Clarendon Press, New York, 1983.