Notre Dame Journal of Formal Logic

The Halting Problem Is Decidable on a Set of Asymptotic Probability One

Joel David Hamkins and Alexei Miasnikov


The halting problem for Turing machines is decidable on a set of asymptotic probability one. The proof is sensitive to the particular computational models.

Article information

Notre Dame J. Formal Logic Volume 47, Number 4 (2006), 515-524.

First available in Project Euclid: 9 January 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03D10: Turing machines and related notions [See also 68Q05]
Secondary: 68Q17: Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.) [See also 68Q15]

Turing machines halting problem decidability


Hamkins, Joel David; Miasnikov, Alexei. The Halting Problem Is Decidable on a Set of Asymptotic Probability One. Notre Dame J. Formal Logic 47 (2006), no. 4, 515--524. doi:10.1305/ndjfl/1168352664.

Export citation


  • [1] Feller, W., An Introduction to Probability Theory and Its Applications. Vol. I, 3d edition, John Wiley & Sons Inc., New York, 1968.
  • [2] Pólya, G., "Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straß ennetz", Mathematische Annalen, vol. 84 (1921), pp. 149--60.
  • [3] Soare, R. I., Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets, Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1987.