Abstract
An important part of the theory of algebraizable sentential logics consists of studying the algebraic semantics of these logics. As developed by Czelakowski, Blok, and Pigozzi and Font and Jansana, among others, it includes studying the properties of logical matrices serving as models of deductive systems and the properties of abstract logics serving as models of sentential logics. The present paper contributes to the development of the categorical theory by abstracting some of these model theoretic aspects and results from the level of sentential logics to the level of π-institutions.
Citation
George Voutsadakis. "Categorical Abstract Algebraic Logic: Models of π-Institutions." Notre Dame J. Formal Logic 46 (4) 439 - 460, 2005. https://doi.org/10.1305/ndjfl/1134397662
Information