Notre Dame Journal of Formal Logic

Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Normalizing

Steffen van Bakel

Abstract

This paper defines reduction on derivations (cut-elimination) in the Strict Intersection Type Assignment System of an earlier paper and shows a strong normalization result for this reduction. Using this result, new proofs are given for the approximation theorem and the characterization of normalizability of terms using intersection types.

Article information

Source
Notre Dame J. Formal Logic Volume 45, Number 1 (2004), 35-63.

Dates
First available: 2 September 2004

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1094155278

Digital Object Identifier
doi:10.1305/ndjfl/1094155278

Mathematical Reviews number (MathSciNet)
MR2133083

Zentralblatt MATH identifier
02186735

Subjects
Primary: 03B15: Higher-order logic and type theory 03F05: Cut-elimination and normal-form theorems
Secondary: 68Q55: Semantics [See also 03B70, 06B35, 18C50]

Keywords
intersection types lambda calculus termination cut-elimination

Citation

van Bakel, Steffen. Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Normalizing. Notre Dame Journal of Formal Logic 45 (2004), no. 1, 35--63. doi:10.1305/ndjfl/1094155278. http://projecteuclid.org/euclid.ndjfl/1094155278.


Export citation

References

  • [1] Barendregt, H. P., The Lambda Calculus. Its Syntax and Semantics, revised edition, vol. 103 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1984.
  • [2] Barendregt, H., M. Coppo, and M. Dezani-Ciancaglini, "A filter lambda model and the completeness of type assignment", The Journal of Symbolic Logic, vol. 48 (1983), pp. 931--40.
  • [3] Coppo, M., and M. Dezani-Ciancaglini, "An extension of the basic functionality theory for the $\lambda $"-calculus, Notre Dame Journal of Formal Logic, vol. 21 (1980), pp. 685--93.
  • [4] Coppo, M., M. Dezani-Ciancaglini, and M. Zacchi, "Type theories, normal forms, and $D\sb \infty$"-lambda-models, Information and Computation, vol. 72 (1987), pp. 85--116.
  • [5] Curry, H. B., "Functionality in combinatory logic", Proceedings of the National Academy of Science USA, vol. 20 (1934), pp. 584--90.
  • [6] Curry, H. B., and R. Feys, Combinatory Logic. Vol. I, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1958.
  • [7] Dezani-Ciancaglini, M., F. Honsell, and Y. Motohama, "Approximation theorems for intersection type systems. Type and set theoretical foundations of computation", Journal of Logic and Computation, vol. 11 (2001), pp. 395--417.
  • [8] Dezani-Ciancaglini, M., and I. Margaria, "A characterization of $F$"-complete type assignments, Theoretical Computer Science, vol. 45 (1986), pp. 121--57.
  • [9] Dezani-Ciancaglini, M., R. K. Meyer, and Y. Motohama, "The semantics of entailment omega", Notre Dame Journal of Formal Logic, vol. 43 (2003), pp. 129--45.
  • [10] Dougherty, D., and P. Lescanne, "Reductions, intersection types, and explicit substitutions", pp. 121--35 in Typed Lambda Calculi and Applications (Kraków, 2001), vol. 2044 of Lecture Notes in Computer Science, Springer, Berlin, 2001.
  • [11] Ghilezan, S., "Strong normalization and typability with intersection types", Notre Dame Journal of Formal Logic, vol. 37 (1996), pp. 44--52.
  • [12] Girard, J.-Y., P. Taylor, and Y. Lafont, Proofs and Types, vol. 7 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, 1989.
  • [13] Krivine, J.-L., Lambda-Calcul. Types et Modèles, Études et Recherches en Informatique. Masson, Paris, 1990.
  • [14] Pottinger, G., "A type assignment for the strongly normalizable $\lambda $"-terms, pp. 561--77 in To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, London, 1980.
  • [15] Retoré, C., "A note on intersection types", INRIA Rapport de recherche 2431, INRIA, France, 1994.
  • [16] Ronchi Della Rocca, S., and B. Venneri, "Principal type schemes for an extended type theory", Theoretical Computer Science, vol. 28 (1984), pp. 151--69.
  • [17] Ronchi Della Rocca, S., "Principal type scheme and unification for intersection type discipline", Theoretical Computer Science, vol. 59 (1988), pp. 181--209. International Joint Conference on Theory and Practice of Software Development (Pisa, 1987).
  • [18] Tait, W. W., "Intensional interpretations of functionals of finite type. I", The Journal of Symbolic Logic, vol. 32 (1967), pp. 198--212.
  • [19] van Bakel, S., "Complete restrictions of the intersection type discipline", Theoretical Computer Science, vol. 102 (1992), pp. 135--63.
  • [20] van Bakel, S., "Intersection type assignment systems", Theoretical Computer Science, vol. 151 (1995), pp. 385--435. Thirteenth Conference on Foundations of Software Technology and Theoretical Computer Science (Bombay, 1993).
  • [21] van Bakel, S., "Strongly normalising cut-elimination with strict intersection types (extended abstract)", Proceedings of Intersection Types and Related Systems (ITRS '02), vol. 70 of Electronic Notes in Theoretical Computer Science, Elsevier, Amsterdam, 2003. \hrefhttp://www.elsevier.nl/locate/entcs/volume70.htmlhttp://www.elsevier%.nl/locate/entcs/volume70.html.
  • [22] van Bakel, S., F. Barbanera, M. Dezani-Ciancaglini, and F.-J. de Vries, "Intersection types for $\lambda$"-trees, Theoretical Computer Science, vol. 272 (2002), pp. 3--40. Theories of types and proofs (Tokyo, 1997).
  • [23] van Bakel, S., and M. Dezani-Ciancaglini, "Characterising strong normalisation for explicit substitutions", pp. 356--70 in LATIN 2002: Theoretical Informatics (Cancun), vol. 2286 of Lecture Notes in Computer Science, Springer, Berlin, 2002.
  • [24] van Bakel, S., and M. Fernández, "Approximation and normalization results for typeable term rewriting systems", pp. 17--36 in Higher-order Algebra, Logic, and Term Rewriting (Paderborn, 1995), vol. 1074 of Lecture Notes in Computer Science, Springer, Berlin, 1996.
  • [25] van Bakel, S., and M. Fernández, "Normalization results for typeable rewrite systems", Information and Computation, vol. 133 (1997), pp. 73--116.
  • [26] van Bakel, S., and M. Fernández, "Normalization, approximation, and semantics for combinator systems", Theoretical Computer Science, vol. 290 (2003), pp. 975--1019.
  • [27] Wadsworth, C. P., "The relation between computational and denotational properties for Scott's $D\sb\infty $"-models of the lambda-calculus, SIAM Journal of Computing, vol. 5 (1976), pp. 488--521.