Notre Dame Journal of Formal Logic

Near coherence of filters. III. A simplified consistency proof.

Andreas Blass and Saharon Shelah

Full-text: Open access

Article information

Source
Notre Dame J. Formal Logic Volume 30, Number 4 (1989), 530-538.

Dates
First available in Project Euclid: 27 August 2004

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1093635236

Zentralblatt MATH identifier
0702.03030

Mathematical Reviews number (MathSciNet)
MR1036674

Digital Object Identifier
doi:10.1305/ndjfl/1093635236

Subjects
Primary: 03E35: Consistency and independence results
Secondary: 03E05: Other combinatorial set theory

Citation

Blass, Andreas; Shelah, Saharon. Near coherence of filters. III. A simplified consistency proof. Notre Dame Journal of Formal Logic 30 (1989), no. 4, 530--538. doi:10.1305/ndjfl/1093635236. http://projecteuclid.org/euclid.ndjfl/1093635236.


Export citation

See also

  • Part I: Andreas Blass. Near coherence of filters. I. Cofinal equivalence of models of arithmetic. Notre Dame Journal of Formal Logic, volume 27, issue 4, (1986), pp. 579-591.
  • Part II: Andreas Blass. Near coherence of filters. II. Applications to operator ideals, the Stone-\v Cech remainder of a half-line, order ideals of sequences, and slenderness of groups. Trans. Amer. Math. Soc. 300 (1987), no. 2, 557--581.