Notre Dame Journal of Formal Logic

Realizing Levels of the Hyperarithmetic Hierarchy as Degree Spectra of Relations on Computable Structures

Denis R. Hirschfeldt and Walker M. White

Abstract

We construct a class of relations on computable structures whose degree spectra form natural classes of degrees. Given any computable ordinal $\alpha$ and reducibility r stronger than or equal to m-reducibility, we show how to construct a structure with an intrinsically $\Sigma_\alpha$ invariant relation whose degree spectrum consists of all nontrivial $\Sigma_\alpha$ r-degrees. We extend this construction to show that $\Sigma_\alpha$ can be replaced by either $\Pi_\alpha$ or $\Delta_\alpha$.

Article information

Source
Notre Dame J. Formal Logic Volume 43, Number 1 (2002), 51-64.

Dates
First available in Project Euclid: 15 December 2003

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1071505769

Digital Object Identifier
doi:10.1305/ndjfl/1071505769

Mathematical Reviews number (MathSciNet)
MR2033315

Zentralblatt MATH identifier
1048.03035

Subjects
Primary: 03D45: Theory of numerations, effectively presented structures [See also 03C57; for intuitionistic and similar approaches see 03F55]
Secondary: 03C15: Denumerable structures 03C57: Effective and recursion-theoretic model theory [See also 03D45] 03D55: Hierarchies 03D30: Other degrees and reducibilities

Keywords
degree spectra of relations computable structures computable model theory hyperarithmetic hierarchy

Citation

Hirschfeldt, Denis R.; White, Walker M. Realizing Levels of the Hyperarithmetic Hierarchy as Degree Spectra of Relations on Computable Structures. Notre Dame J. Formal Logic 43 (2002), no. 1, 51--64. doi:10.1305/ndjfl/1071505769. http://projecteuclid.org/euclid.ndjfl/1071505769.


Export citation

References

  • [1] Ash, C. J., "Generalizations of enumeration reducibility using recursive infinitary propositional sentences", Annals of Pure and Applied Logic, vol. 58 (1992), pp. 173--84. špace3pt
  • [2] Ash, C. J., P. Cholak, and J. F. Knight, "Permitting, forcing, and copying of a given recursive relation", Annals of Pure and Applied Logic, vol. 86 (1997), pp. 219--36. špace3pt
  • [3] Ash, C. J., and J. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, Amsterdam, 2000. špace3pt
  • [4] Ash, C. J., and J. F. Knight, "Pairs of recursive structures", Annals of Pure and Applied Logic, vol. 46 (1990), pp. 211--34. špace3pt
  • [5] Ash, C. J., and J. F. Knight, "Relatively recursive expansions", Fundamenta Mathematicae, vol. 140 (1992), pp. 137--55. špace3pt
  • [6] Ash, C. J., and J. F. Knight, "A completeness theorem for certain classes of recursive infinitary formulas", Mathematical Logic Quarterly, vol. 40 (1994), pp. 173--81. špace3pt
  • [7] Ash, C. J., and J. F. Knight, "Ramified systems", Annals of Pure and Applied Logic, vol. 70 (1994), pp. 205--21. špace3pt
  • [8] Ash, C. J., and J. F. Knight, "Possible degrees in recursive copies", Annals of Pure and Applied Logic, vol. 75 (1995), pp. 215--21. špace3pt
  • [9] Ash, C. J., and J. F. Knight, "Possible degrees in recursive copies. II", Annals of Pure and Applied Logic, vol. 87 (1997), pp. 151--65. špace3pt
  • [10] Ash, C. J., and A. Nerode, "Intrinsically recursive relations", pp. 26--41 in Aspects of Effective Algebra (Clayton, 1979), edited by J. N. Crossley, Upside Down A Book Co., Yarra Glen, 1981. špace3pt
  • [11] Epstein, R. L., R. Haas, and R. L. Kramer, "Hierarchies of sets and degrees below $\bf 0\sp\prime $", pp. 32--48 in Logic Year 1979--80 (Proceedings of Seminars and Conferences in Mathematical Logic, University of Connecticut), edited by M. Lerman, J. H. Schmerl, and R. I. Soare, Springer, Berlin, 1981. špace3pt
  • [12] Harizanov, V. S., Degree Spectrum of a Recursive Relation on a Recursive Structure, Ph.D. thesis, University of Wisconsin, Madison, 1987.špace3pt
  • [13] Harizanov, V. S., "Some effects of Ash-Nerode and other decidability conditions on degree spectra", Annals of Pure and Applied Logic, vol. 55 (1991), pp. 51--65. špace3pt
  • [14] Harizanov, V. S., "Turing degrees of certain isomorphic images of computable relations", Annals of Pure and Applied Logic, vol. 93 (1998), pp. 103--13. špace3pt
  • [15] Hirschfeldt, D. R., "Degree spectra of relations on computable structures", The Bulletin of Symbolic Logic, vol. 6 (2000), pp. 197--212. špace3pt
  • [16] Hirschfeldt, D. R., "Degree spectra of relations on computable structures in the presence of $\Delta\sb 2\sp 0$" isomorphisms, The Journal of Symbolic Logic, vol. 67 (2002), pp. 697--720. špace3pt
  • [17] Hirschfeldt, D. R., B. Khoussainov, R. A. Shore, and A. M. Slinko, "Degree spectra and computable dimensions in algebraic structures", Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71--113. špace3pt
  • [18] Khoussainov, B., and R. A. Shore, "Effective model theory: The number of models and their complexity", pp. 193--239 in Models and Computability (Leeds, 1997), edited by S. B. Cooper and J. K. Truss, Cambridge University Press, Cambridge, 1999. špace3pt
  • [19] Knight, J. F., "Coding a family of sets", Annals of Pure and Applied Logic, vol. 94 (1998), pp. 127--42. špace3pt
  • [20] Sacks, G. E., Higher Recursion Theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1990. špace3pt
  • [21] Shore, R. A., "Computable structures: Presentations matter", pp. 81--95 in In the Scope of Logic, Methodology and Philosophy of Science (Vol. 1 of the Eleventh International Congress of Logic, Methodology and Philosophy of Science, Cracow, August 1999), vol. 315 of Synthese Library, edited by P. Gärdenfors, J. Woleński, and K. Kijania-Placek, Kluwer Academic Publishers, Dordrecht, 2002. špace3pt
  • [22] Soare, R. I., Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987. špace3pt
  • [23] Soskov, I. N., and V. Baleva, "Ash's theorem for abstract structures", preprint, 2001.špace-1pt
  • [24] Soskov, I. N., and V. Baleva, "Regular enumerations", The Journal of Symbolic Logic, vol. 67 (2002), pp. 1323--43. špace3pt
  • [25] White, W. M., Characterizations for Computable Structures, Ph.D. thesis, Cornell University, Ithaca, 2000.špace3pt