Notre Dame Journal of Formal Logic

Subintuitionistic Logics

Greg Restall

Full-text: Open access

Abstract

Weakening the conditions on the Kripke semantics for propositional intuitionistic logic (J) unearths a family of logics below J. This paper provides a characterization of eleven such logics, using Kripke semantics, proof theory, and algebraic models. Questions about modelling quantification in these logics are also discussed.

Article information

Source
Notre Dame J. Formal Logic Volume 35, Number 1 (1994), 116-129.

Dates
First available in Project Euclid: 22 December 2002

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1040609299

Digital Object Identifier
doi:10.1305/ndjfl/1040609299

Mathematical Reviews number (MathSciNet)
MR1271703

Zentralblatt MATH identifier
0811.03005

Subjects
Primary: 03B20: Subsystems of classical logic (including intuitionistic logic)
Secondary: 03G25: Other algebras related to logic [See also 03F45, 06D20, 06E25, 06F35]

Citation

Restall, Greg. Subintuitionistic Logics. Notre Dame J. Formal Logic 35 (1994), no. 1, 116--129. doi:10.1305/ndjfl/1040609299. http://projecteuclid.org/euclid.ndjfl/1040609299.


Export citation