Notre Dame Journal of Formal Logic

On the Revision of Probabilistic Belief States

Craig Boutilier


In this paper we describe two approaches to the revision of probability functions. We assume that a probabilistic state of belief is captured by a counterfactual probability or Popper function, the revision of which determines a new Popper function. We describe methods whereby the original function determines the nature of the revised function. The first is based on a probabilistic extension of Spohn's OCFs, whereas the second exploits the structure implicit in the Popper function itself. This stands in contrast with previous approaches that associate a unique Popper function with each absolute (classical) probability function. We also describe iterated revision using these models. Finally, we consider the point of view that Popper functions may be abstract representations of certain types of absolute probability functions, but we show that our revision methods cannot be naturally interpreted as conditionalization on these functions.

Article information

Notre Dame J. Formal Logic Volume 36, Number 1 (1995), 158-183.

First available: 19 December 2002

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Digital Object Identifier

Zentralblatt MATH identifier

Primary: 03B48: Probability and inductive logic [See also 60A05]
Secondary: 68T27: Logic in artificial intelligence 68T30: Knowledge representation


Boutilier, Craig. On the Revision of Probabilistic Belief States. Notre Dame Journal of Formal Logic 36 (1995), no. 1, 158--183. doi:10.1305/ndjfl/1040308833.

Export citation


  • [1] Adams, E., The Logic of Conditionals, Reidel, Dordrecht, 1975.
  • [2] Alchourrón, C., P. Gärdenfors and D. Makinson, ``On the logic of theory change: partial meet contraction and revision functions,'' The Journal of Symbolic Logic, vol. 50 (1985), pp. 510--530.
  • [3] Alchourrón, C. and D. Makinson, ``On the logic of theory change: safe contraction,'' Studia Logica, vol. 44 (1985), pp. 405--422.
  • [4] Boutilier, C., ``Sequences of revisions: on the semantics of nested conditionals,'' Technical Report 92-24, University of British Columbia, Vancouver, 1992.
  • [5] Boutilier, C., ``Revision sequences and nested conditionals,'' pp. 519--525 in Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, 1993.
  • [6] Boutilier, C., ``Conditional logics of normality: a modal approach,'' Artificial Intelligence, vol. 68 (1994), pp. 87--154.
  • [7] Boutilier, C., ``Iterated revision and minimal revision of conditional beliefs,'' forthcoming in Journal of Philosophical Logic.
  • [8] Boutilier, C., ``Toward a logic for qualitative decision theory,'' pp. 75--86 in Proceedings of the Fourth International Conference on Principles of Knowledge Representation and Reasoning, edited by J. Doyle, E. Sandewall and P. Torasso, Morgan Kaufmann, San Mateo, 1994.
  • [9] Boutilier, C., ``Unifying default reasoning and belief revision in a modal framework,'' Artificial Intelligence, vol. 68 (1994), pp. 33--85.
  • [10] Cheeseman, P., ``In defense of probability,'' pp. 1002--1009 in Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Morgan Kaufmann, Los Altos, 1985.
  • [11] Fuhrmann, A., ``Theory contraction through base contraction,'' Journal of Philosophical Logic, vol. 20 (1991), pp. 175--203.
  • [12] Gärdenfors, P., Knowledge in Flux: Modeling the Dynamics of Epistemic States, MIT Press, Cambridge, 1988.
  • [13] Gärdenfors, P. and D. Makinson. ``Revisions of knowledge systems using epistemic entrenchment,'' pp. 83--95 in Proceedings of the Third Conference on Theoretical Aspects of Reasoning about Knowledge, edited by M. Y. Vardi, Morgan Kaufmann, San Mateo, 1988.
  • [14] Grove, A., ``Two modellings for theory change,'' Journal of Philosophical Logic, vol. 17 (1988), pp. 157--170.
  • [15] Hansson, S. O., ``In defense of base contraction,'' Synthese, vol. 91 (1992), pp. 239--245.
  • [16] Hansson, S. O., ``In defense of the Ramsey test,'' Journal of Philosophy, vol. 89 (1992), pp. 522--540.
  • [17] Harman, G., Change in View, MIT Press, Cambridge, 1986.
  • [18] Harper, W. L., ``Rational belief change, Popper functions and counterfactuals,'' pp.73--115 in Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, vol. 1, edited by W. L. Harper and C. A. Hooker, Reidel, Dordrecht, 1976.
  • [19] Jeffrey, R. C., The Logic of Decision, McGraw-Hill, New York, 1965.
  • [20] Kyburg, Jr., H. E., Probability and the Logic of Rational Belief, Wesleyan University Press, Middletown, 1961.
  • [21] Levi, I., The Enterprise of Knowledge, MIT Press, Cambridge, 1980.
  • [22] Lindström, S. and W. Rabinowicz, ``On the probabilitic representation of non-probabilistic belief revision,'' Journal of Philosophical Logic, vol. 18 (1989), pp. 69--101.
  • [23] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, 1988.
  • [24] Poole, M., ``Decision-theoretic defaults,'' pp. 190--197 in Proceedings of Canadian Society for Computational Studies of Intelligence Conference, edited by J. Glasgow and R. Hadley, Morgan Kaufmann, San Mateo, 1992.
  • [25] Rott, H., ``Preferential belief change using generalized epistemic entrenchment,'' Journal of Logic, Language and Information, vol. 1 (1992), pp. 45--78.
  • [26] Schlechta, K., ``Theory revision and probability,'' Notre Dame Journal of Formal Logic, vol. 32 (1991), pp. 307--318.
  • [27] Spohn, W., ``The representation of popper measures,'' Topoi, vol. 5 (1986), pp. 69--74.
  • [28] Spohn, W., ``Ordinal conditional functions: a dynamic theory of epistemic states,'' pp. 105--134 in Causation in Decision, Belief Change and Statistics, volume 2, edited by W. L. Harper and B. Skyrms, Reidel, Dordrecht, 1987.
  • [29] Stalnaker, R. C., ``Probability and conditionals,'' pp. 107--128 in Ifs, edited by W. L. Harper, R. Stalnaker and G. Pearce, Reidel, Dordrecht, 1970.
  • [30] van Fraassen, B. C., ``Representation of conditional probabilities,'' Journal of Philosophical Logic, vol. 5 (1976), pp. 417--430.
  • [31] van Fraassen, B. C., ``Rational belief and probability kinematics,'' Philosophy of Science, vol. 47 (1980), pp. 165--187.
  • [32] Williams, P. M., ``Bayesian conditionalization and the principle of minimum information,'' British Journal for the Philosophy of Science, vol. 31 (1980), pp. 131--144.