Notre Dame Journal of Formal Logic

Elementary Propositions and Independence

John L. Bell and William Demopoulos

Abstract

This paper is concerned with Wittgenstein's early doctrine of the independence of elementary propositions. Using the notion of a free generator for a logical calculus–a concept we claim was anticipated by Wittgenstein–we show precisely why certain difficulties associated with his doctrine cannot be overcome. We then show that Russell's version of logical atomism–with independent particulars instead of elementary propositions–avoids the same difficulties.

Article information

Source
Notre Dame J. Formal Logic Volume 37, Number 1 (1996), 112-124.

Dates
First available: 16 December 2002

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1040067320

Mathematical Reviews number (MathSciNet)
MR1379553

Digital Object Identifier
doi:10.1305/ndjfl/1040067320

Zentralblatt MATH identifier
0855.03006

Subjects
Primary: 03A05: Philosophical and critical {For philosophy of mathematics, see also 00A30}
Secondary: 03B10: Classical first-order logic

Citation

Bell, John L.; Demopoulos, William. Elementary Propositions and Independence. Notre Dame Journal of Formal Logic 37 (1996), no. 1, 112--124. doi:10.1305/ndjfl/1040067320. http://projecteuclid.org/euclid.ndjfl/1040067320.


Export citation

References

  • [1] Allaire, E. P., ``Tractatus 6.3751,'' Analysis, vol. 19 (1959), pp. 57--59.
  • [2] Anscombe, G. E. M., An Introduction to Wittgenstein's Tractatus, University of Pennsylvania Press, Philadelphia, 1971.
  • [3] Dummett, M., ``What is mathematics about?,'' pp. 11--26 in Mathematics and Mind, edited by A. George, Oxford University Press, Oxford, 1994.
  • [4] Goldfarb, W., ``Logic in the twenties: the nature of the quantifier,'' The Journal of Symbolic Logic, vol. 44 (1979), pp. 351--368.
  • [5] Griffin, James, Wittgenstein's Logical Atomism, Oxford University Press, Oxford, 1964.
  • [6] Hertz, H., The Principles of Mechanics, translated by D. E. Jones and J. T. Walley, Dover, New York, 1956.
  • [7] Kremer, M., ``The multiplicity of general propositions,'' Noûs, vol. 26 (1992), pp. 409--426.
  • [8] McGuinness, B., ``The Grundgedanke of the Tractatus,'' pp. 49--61 in Understanding Wittgenstein, edited by G. Vesey, Macmillan, London, 1974.
  • [9] Mounce, H. O., Wittgenstein's Tractatus: An Introduction, University of Chicago Press, Chicago, 1981.
  • [10] Pears, D., ``The logical independence of elementary propositions,'' pp. 74--84 in Perspectives on the Philosophy of Wittgenstein, edited by I. Block, Blackwell, Oxford, 1981.
  • [11] Ramsey, F. P., ``Facts and propositions,'' pp. 138--155 in The Foundations of Mathematics and Other Logical Essays, edited by R. B. Braithwaithe, Littlefield Adams and Co., Paterson, 1960.
  • [12] Rasiowa, H., and R. Sikorski, The Mathematics of Metamathematics, Panstowe Wydawnictwo Naukowe, Warsaw, 1963.
  • [13] Rédei, M. ``Logical independence in quantum logic,'' Foundations of Physics, vol. 25 (1995), pp. 411--422.
  • [14] Rosenberg, J. F. ``Wittgenstein's theory of language as picture,'' American Philosophical Quarterly, vol. 5 (1968), pp. 18--30.
  • [15] Russell, B., The Principles of Mathematics, Norton, New York, 1902.
  • [16] Russell, B., The Philosophy of Logical Atomism, in Logic and Knowledge: Essays 1901--1950, edited by R. Marsh, George Allen and Unwin, London, 1956.
  • [17] Sikorski, R., Boolean Algebras, Second edition, Springer-Verlag, Berlin, 1960.
  • [18] Skyrms, B., ``Logical atomism and combinatorial possibility,'' The Journal of Philosophy, vol. 90 (1993), pp. 219--232.
  • [19] Stairs, A., ``On the logic of pairs of quantum systems,'' Synthese, vol. 56 (1983), pp. 47--60.
  • [20] Wittgenstein, L., ``Notes on Logic (1913),'' pp. 93--106 in Notebooks, 1914--1916, edited and translated by G. E. M. Anscombe, Basil Blackwell, Oxford, 1961.
  • [21] Wittgenstein, L., Tractatus Logico-Philosophicus, translated by D. Pears and B. McGuinness, Routledge & Kegan Paul, London, 1961.
  • [22] Wittgenstein, L., ``Some remarks on logical form,'' Proceedings of the Aristotelian Society, Supplementary Volume IX (1929), pp. 162--171.