Notre Dame Journal of Formal Logic

A Contingent Russell's Paradox

Francesco Orilia


It is shown that two formally consistent type-free second-order systems, due to Cocchiarella, and based on the notion of homogeneous stratification, are subject to a contingent version of Russell's paradox.

Article information

Notre Dame J. Formal Logic Volume 37, Number 1 (1996), 105-111.

First available in Project Euclid: 16 December 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03B15: Higher-order logic and type theory


Orilia, Francesco. A Contingent Russell's Paradox. Notre Dame J. Formal Logic 37 (1996), no. 1, 105--111. doi:10.1305/ndjfl/1040067319.

Export citation


  • [1] Chierchia, G., Topics in the Syntax and Semantics of Infinitives and Gerunds, Ph.D. dissertation, University of Massachusetts, Amherst, 1984.
  • [2] Cocchiarella, N., ``The theory of homogeneous simple types as a second order logic,'' Notre Dame Journal of Formal Logic, vol. 20 (1979), pp. 505--524.
  • [3] Cocchiarella, N., ``Two $\lambda$-extensions of the theory of homogeneous simple types,'' Notre Dame Journal of Formal Logic, vol. 26 (1985), pp. 377--407.
  • [4] Cocchiarella, N., ``Frege, Russell and logicism: a logical reconstruction,'' pp. 197--252 in Frege Synthesized, edited by L. Haaparanta and J. Hintikka, Reidel, Dordrecht, 1986.
  • [5] Cocchiarella, N., Logical Investigations of Predication Theory and the Problem of Universals, Bibliopolis Press, Naples, 1986.
  • [6] Cocchiarella, N., ``Conceptualism, realism, and intensional logic,'' Topoi, vol. 5 (1989), pp. 75--87.
  • [7] Gupta, A., ``Truth and paradox," Journal of Philosophical Logic, vol. 11 (1982), pp. 1--60.
  • [8] Kripke, S., ``Outline of a theory of truth,'' Journal of Philosophy, vol. 72 (1975), pp. 690--716.
  • [9] Landini, G., Meinong Reconstructed Versus Early Russell Reconstructed: A Study in the Formal Ontology of Fiction, Ph.D. dissertation, Indiana University, Bloomington, 1986.
  • [10] Landini G., ``How to Russell another Meinongian: a Russellian theory of fictional objects versus Zalta's theory of abstract objects," Grazer Philosophische Studien, vol. 37 (1990), pp. 93--122.
  • [11] Orilia, F., ``Belief representation in a deductivist type-free doxastic logic,'' Minds and Machines, vol. 4 (1994), pp. 163--203.
  • [12] Quine, W., Set Theory and Its Logic, Harvard University Press, Cambridge, 1963.
  • [13] Tarski, A., ``The concept of truth in formalized languages,'' pp. 152--278 in Logic, Semantics, Metamathematics, Clarendon, Oxford, 1956.