Notre Dame Journal of Formal Logic

Strong Normalization and Typability with Intersection Types

Silvia Ghilezan

Abstract

A simple proof is given of the property that the set of strongly normalizing lambda terms coincides with the set of lambda terms typable in certain intersection type assignment systems.

Article information

Source
Notre Dame J. Formal Logic Volume 37, Number 1 (1996), 44-52.

Dates
First available: 16 December 2002

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1040067315

Mathematical Reviews number (MathSciNet)
MR1379548

Digital Object Identifier
doi:10.1305/ndjfl/1040067315

Zentralblatt MATH identifier
0859.03007

Subjects
Primary: 03B40: Combinatory logic and lambda-calculus [See also 68N18]
Secondary: 03B15: Higher-order logic and type theory 03B70: Logic in computer science [See also 68-XX] 68Q55: Semantics [See also 03B70, 06B35, 18C50]

Citation

Ghilezan, Silvia. Strong Normalization and Typability with Intersection Types. Notre Dame Journal of Formal Logic 37 (1996), no. 1, 44--52. doi:10.1305/ndjfl/1040067315. http://projecteuclid.org/euclid.ndjfl/1040067315.


Export citation

References

  • [1] Barendregt, H. P., ``Lambda calculi with types,'' pp. 117--309 in Handbook of Logic in Computer Science, vol. II, edited by S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Oxford University Press, Oxford, 1992.
  • [2] Barendregt, H. P., M. Coppo, and M. Dezani--Ciancaglini, ``A filter model and the completeness of type assignment,'' The Journal of Symbolic Logic, vol. 48 (1983), pp. 931--940.
  • [3] Coppo, M., M. Dezani-Ciancaglini, and B. Venneri, ``Principal type schemes and $\lambda $-calculus semantics,'' pp. 480--490 in To H. B. Curry: Essays on Combinatory Logic, Typed Lambda Calculus and Formalism, edited by J. R. Hindley and J. P. Seldin, Academic Press, London, 1980.
  • [4] Coppo, M., M. Dezani-Ciancaglini, and B. Venneri, ``Functional characters of solvable terms,'' Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 27 (1981), pp. 45--58.
  • [5] Gallier, J. H., ``Reducibility strikes again I,'' Technical report (1993), University of Pennsylvania, Philadelphia.
  • [6] Ghilezan, S., ``Typability and inhabitation in intersection type assignment systems,'' forthcoming.
  • [7] Girard, J.-Y., Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre supérieur, Ph. D. Thesis, Université Paris VII, 1972.
  • [8] Girard, J.-Y., Y. Lafont, and P. Taylor, Proofs and Types, Tracts in Theoretical Computer Science 7, Cambridge University Press, Cambridge, 1990.
  • [9] Krivine, J. L., Lambda-calcul, types et modèles, Masson, Paris, 1990.
  • [10] Leivant, D., ``Polymorphic type inference,'' pp. 88--98 in Proceedings 10$^th$ ACM Symposium on Principles of Programming Languages, Austin, Texas, 1983.
  • [11] Pottinger, G., ``A type assignment for the strongly normalizable $\lambda $-terms,'' pp. 561--577 in To H. B. Curry: Essays on Combinatory Logic, Typed Lambda Calculus and Formalism, edited by J. R. Hindley and J. P. Seldin, Academic Press, London, 1980.
  • [12] Ronchi della Rocca, S., and B. Venneri, ``Principal type schemes for an extended type theory,'' Theoretical Computer Science, vol. 28 (1984), pp. 151--169.
  • [13] %14 Tait, W. W., ``Intensional interpretation of functionals of finite type I,'' The Journal of Symbolic Logic, vol. 32 (1967), pp. 198--212.
  • [14] %15 Tait, W. W., ``A realizability interpretation of the theory of species,'' pp. 240--251 in Logic Colloquium (Boston), edited by R. Parikh, Lecture Notes in Mathematics 453, Springer-Verlag, Berlin, 1975.
  • [15] van Bakel, S., ``Complete restrictions of the intersection type discipline,'' Theoretical Computer Science, vol. 102 (1992), pp. 136--163.