Notre Dame Journal of Formal Logic

A Constructive Valuation Semantics for Classical Logic

Franco Barbanera and Stefano Berardi

Abstract

This paper presents a constructive interpretation for the proofs in classical logic of $\Sigma^0_1$ -sentences and for a witness extraction procedure based on Prawitz's reduction rules.

Article information

Source
Notre Dame J. Formal Logic Volume 37, Number 3 (1996), 462-482.

Dates
First available in Project Euclid: 14 December 2002

Permanent link to this document
http://projecteuclid.org/euclid.ndjfl/1039886522

Mathematical Reviews number (MathSciNet)
MR1434431

Digital Object Identifier
doi:10.1305/ndjfl/1039886522

Zentralblatt MATH identifier
0882.03007

Subjects
Primary: 03B10: Classical first-order logic
Secondary: 03F07: Structure of proofs

Citation

Barbanera, Franco; Berardi, Stefano. A Constructive Valuation Semantics for Classical Logic. Notre Dame J. Formal Logic 37 (1996), no. 3, 462--482. doi:10.1305/ndjfl/1039886522. http://projecteuclid.org/euclid.ndjfl/1039886522.


Export citation

References

  • [1] Barbanera F., and S. Berardi, ``Witness Extraction in Classical Logic through Normalization,'' pp. 219--246 in Logical Environments, edited by G. Huet and G. Plotkin, Cambridge University Press, Cambridge, 1993.
  • [2] Barbanera, F., and S. Berardi, ``A constructive valuation interpretation for classical logic and its use in witness extraction,'' pp. 1--23 in Proceedings of Colloquium on Trees in Algebra and Programming (CAAP), LNCS 581, Springer-Verlag, New York, 1992.
  • [3] Friedman, H., ``Classically and intuitionistically provably recursive functions,'' pp. 21--28 in Higher Set Theory, edited by D. S. Scott and G. H. Muller, Lecture Notes in Mathematics, vol. 699, Springer-Verlag, New York, 1978.
  • [4] Heyting, A., Mathematische Grundlagenforschung. Intuitionismus. Beweistheorie, Springer, Berlin, Reprinted 1974.
  • [5] Kreisel, G., ``Mathematical significance of consistency proofs,'' The Journal of Symbolic Logic, vol. 23 (1958), pp. 155--182.
  • [6] Kolmogorov, A. N., ``Zur Deutung der Intuitionistischen Logik,'' Mathematische Zeitschrift, vol. 35 (1932), pp. 58--56.
  • [7] Martin-Löf, P., ``An intuitionistic theory of types: predicative part,'' pp. 73--118 in Logic Colloquium 73, edited by H. E. Rose and J. C. Sheperdson, North-Holland, Amsterdam, 1975.
  • [8] Prawitz, D., Natural deduction, a proof theoretical study, Almqvist and Winskell, Stockholm, 1965.
  • [9] Prawitz, D., ``Validity and normalizability of proofs in first and second order classical and intuitionistic logic,'' pp. 11--36 in Atti del I Congresso Italiano di Logica, Bibliopolis, Napoli, 1981.
  • [10] Shoenfield, J. R., Mathematical Logic, Addison-Wesley, Reading, 1967.