The Michigan Mathematical Journal

Polyhedral divisors and SL2-actions on affine T-varieties

Ivan Arzhantsev and Alvaro Liendo

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Michigan Math. J. Volume 61, Issue 4 (2012), 731-762.

Dates
First available in Project Euclid: 16 November 2012

Permanent link to this document
http://projecteuclid.org/euclid.mmj/1353098511

Digital Object Identifier
doi:10.1307/mmj/1353098511

Mathematical Reviews number (MathSciNet)
MR3049288

Zentralblatt MATH identifier
1271.14090

Subjects
Primary: 13N15: Derivations 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17]
Secondary: 14M25: Toric varieties, Newton polyhedra [See also 52B20] 14R20: Group actions on affine varieties [See also 13A50, 14L30] 14M17: Homogeneous spaces and generalizations [See also 32M10, 53C30, 57T15]

Citation

Arzhantsev, Ivan; Liendo, Alvaro. Polyhedral divisors and SL 2 -actions on affine T -varieties. Michigan Math. J. 61 (2012), no. 4, 731--762. doi:10.1307/mmj/1353098511. http://projecteuclid.org/euclid.mmj/1353098511.


Export citation

References

  • K. Altmann and J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), 557–607.
  • K. Altmann, J. Hausen, and H. Süss, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), 215–242.
  • K. Altmann, N. Owen Ilten, L. Petersen, H. Süss, and R. Vollmert, The geometry of T-varieties, Contributions to algebraic geometry (P. Pragacz, ed.), IMPANGA Lecture Notes (to appear).
  • I. V. Arzhantsev, On $\text{\rm SL}_{2}$-actions of complexity one, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), 3–18 (Russian); English translation in Izv. Math. 61 (1997), 685–698.
  • V. Batyrev and F. Haddad, On the geometry of $\text{\rm SL}(2)$-equivariant flips, Mosc. Math. J. 8 (2008), 621–646, 846.
  • F. Berchtold and J. Hausen, Demushkin's theorem in codimension one, Math. Z. 244 (2003), 697–703.
  • M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. (4) 3 (1970), 507–588.
  • –––, Anneaux gradués normaux, Introduction à la théorie des singularités, II, Travaux en Cours, 37, pp. 35–68, Hermann, Paris, 1988.
  • I. Dolgachev, Lectures on invariant theory, London Math. Soc. Lecture Note Ser., 296, Cambridge Univ. Press, Cambridge, 2003.
  • H. Flenner and M. Zaidenberg, Locally nilpotent derivations on affine surfaces with a ${\Bbb C}^{*}$-action, Osaka J. Math. 42 (2005), 931–974.
  • G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia Math. Sci., 136, Springer-Verlag, Berlin, 2006.
  • W. Fulton, Introduction to toric varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993.
  • S. A. Gaĭfullin, Affine toric $\text{\rm SL}(2)$-embeddings, Mat. Sb. (N.S.) 199 (2008), 3–24.
  • G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin, 1973.
  • H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Vieweg, Braunschweig, 1984.
  • A. Liendo, Affine ${\Bbb T}$-varieties of complexity one and locally nilpotent derivations, Transform. Groups 15 (2010), 389–425.
  • –––, ${\Bbb G}_{\text{\rm a}}$-actions of fiber type on affine ${\Bbb T}$-varieties, J. Algebra 324 (2010), 3653–3665.
  • D. Luna, Sur les orbites fermées des groupes algébriques réductifs, Invent. Math. 16 (1972), 1–5.
  • –––, Adhérences d'orbite et invariants, Invent. Math. 29 (1975), 231–238.
  • V. L. Popov, Quasihomogeneous affine algebraic varieties of the group $\text{\rm SL}(2),$ Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 792–832.
  • –––, Contractions of actions of reductive algebraic groups, Mat. Sb. (N.S.) 130 (1986), 310–334.
  • D. A. Timashev, Classification of $G$-manifolds of complexity 1, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), 127–162 (Russian); English translation in Izv. Math. 61 (1997), 363–397.
  • –––, Torus actions of complexity one, Toric topology, Contemp. Math., 460, pp. 349–364, Amer. Math. Soc., Providence, RI, 2008.