The Michigan Mathematical Journal

Wonderful compactification of an arrangement of subvarieties

Li Li

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Michigan Math. J. Volume 58, Issue 2 (2009), 535-563.

Dates
First available: 13 August 2009

Permanent link to this document
http://projecteuclid.org/euclid.mmj/1250169076

Digital Object Identifier
doi:10.1307/mmj/1250169076

Zentralblatt MATH identifier
05648491

Mathematical Reviews number (MathSciNet)
MR2595553

Subjects
Primary: 14N20: Configurations and arrangements of linear subspaces
Secondary: 55R81

Citation

Li, Li. Wonderful compactification of an arrangement of subvarieties. The Michigan Mathematical Journal 58 (2009), no. 2, 535--563. doi:10.1307/mmj/1250169076. http://projecteuclid.org/euclid.mmj/1250169076.


Export citation

References

  • M. Atiyah and I. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, MA, 1969.
  • S. Axelrod and I. Singer, Chern--Simons perturbation theory II, J. Differential Geom. 39 (1994), 173--213.
  • R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171--206.
  • C. De Concini and C. Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), 459--494.
  • W. Fulton, Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1998.
  • W. Fulton and R. MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), 183--225.
  • R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977.
  • Y. Hu, A compactification of open varieties, Trans. Amer. Math. Soc. 355 (2003), 4737--4753.
  • M. Kapranov, Chow quotients of Grassmannians, I. I. M. Gel'fand seminar, Adv. Soviet Math., 16, part 2, pp. 29--110, Amer. Math. Soc., Providence, RI, 1993.
  • S. Keel, Intersection theory of moduli space of stable $n$-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545--574.
  • ------, Intersection theory of linear embeddings, Trans. Amer. Math. Soc. 335 (1993), 195--212.
  • G. Kuperberg and D. Thurston, Perturbative 3-manifold invariants by cut-and-paste topology, preprint, math.GT/9912167.
  • R. MacPherson and C. Procesi, Making conical compactifications wonderful, Selecta Math. (N.S.) 4 (1998), 125--139.
  • D. Thurston, Integral expressions for the Vassiliev knot invariants, preprint, math.AG/9901110.
  • A. Ulyanov, Polydiagonal compactification of configuration spaces, J. Algebraic Geom. 11 (2002), 129--159.