The Michigan Mathematical Journal

A note on mappings of finite distortion: The sharp modulus of continuity

Jani Onninen and Xiao Zhong

Full-text: Open access

Article information

Source
Michigan Math. J. Volume 53, Issue 2 (2005), 329-335.

Dates
First available: 3 August 2005

Permanent link to this document
http://projecteuclid.org/euclid.mmj/1123090772

Digital Object Identifier
doi:10.1307/mmj/1123090772

Mathematical Reviews number (MathSciNet)
MR2152704

Subjects
Primary: 30C65: Quasiconformal mappings in $R^n$ , other generalizations

Citation

Onninen, Jani; Zhong, Xiao. A note on mappings of finite distortion: The sharp modulus of continuity. The Michigan Mathematical Journal 53 (2005), no. 2, 329--335. doi:10.1307/mmj/1123090772. http://projecteuclid.org/euclid.mmj/1123090772.


Export citation

References

  • G. David, Solutions de l'equation de Beltrami avec $\|\mu\|_\infty=1,\!$ Ann Acad. Sci. Fenn. Ser. A I Math. 13 (1988), 25--70.
  • D. Faraco, P. Koskela, and X. Zhong, Mappings of finite distortion: The degree of regularity, Adv. Math. 190 (2005), 300--318.
  • T. Iwaniec, P. Koskela, and J. Onninen, Mappings of finite distortion: Monotonicity and continuity, Invent. Math. 144 (2001), 507--531.
  • T. Iwaniec and G. J. Martin, Geometric function theory and non-linear analysis, Oxford Math. Monogr., Oxford University Press, 2001.
  • ------, The Beltrami equation, Mem. Amer. Math. Soc. (to appear).
  • J. Kauhanen, P. Koskela, and J. Malý, Mappings of finite distortion: Condition N, Michigan Math. J. 49 (2001), 169--181.
  • ------, Mappings of finite distortion: Discreteness and openness, Arch. Rational Mech. Anal. 160 (2001), 135--151.
  • J. Kauhanen, P. Koskela, J. Malý, J. Onninen, and X. Zhong, Mappings of finite distortion: Sharp Orlicz-conditions, Rev. Mat. Iberoamericana 19 (2003), 857--872.
  • P. Koskela and J. Onninen, Mappings of finite distortion: The sharp modulus of continuity, Trans. Amer. Math. Soc. 355 (2003), 1905--1920.
  • P. Koskela and X. Zhong, Minimal assumptions for the integrability of the Jacobian, Ricerche Mat. 51 (2002), 297--311.
  • J. Onninen, A note on the isoperimetric inequality, Proc. Amer. Math. Soc. 131 (2003), 3821--3825.
  • Yu. G. Reshetnyak, Bounds on moduli of continuity for certain mappings, Sibirsk. Mat. Zh. 7 (1966), 1106--1114.
  • ------, Space mappings with bounded distortion, Transl. Math. Monogr., 73, Amer. Math. Soc., Providence, RI, 1989.
  • S. Rickman, Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993.