The Michigan Mathematical Journal

A counterexample to the fourteenth problem of Hilbert in dimension three

Shigeru Kuroda

Full-text: Open access

Article information

Source
Michigan Math. J. Volume 53, Issue 1 (2005), 123-132.

Dates
First available in Project Euclid: 20 April 2005

Permanent link to this document
http://projecteuclid.org/euclid.mmj/1114021089

Digital Object Identifier
doi:10.1307/mmj/1114021089

Mathematical Reviews number (MathSciNet)
MR2125538

Zentralblatt MATH identifier
02187049

Subjects
Primary: 13E15: Rings and modules of finite generation or presentation; number of generators
Secondary: 13A50: Actions of groups on commutative rings; invariant theory [See also 14L24] 13N15: Derivations

Citation

Kuroda, Shigeru. A counterexample to the fourteenth problem of Hilbert in dimension three. Michigan Math. J. 53 (2005), no. 1, 123--132. doi:10.1307/mmj/1114021089. http://projecteuclid.org/euclid.mmj/1114021089.


Export citation

References

  • A. A'Campo-Neuen, Note on a counterexample to Hilbert's fourteenth problem given by P. Roberts, Indag. Math. (N.S.) 5 (1994), 253--257.
  • D. Daigle and G. Freudenburg, A counterexample to Hilbert's fourteenth problem in dimension 5, J. Algebra 221 (1999), 528--535.
  • ------, Triangular derivations of $k[X_1,X_2,X_3,X_4],$ J. Algebra 241 (2001), 328--339.
  • H. Derksen, The kernel of a derivation, J. Pure Appl. Algebra 84 (1993), 13--16.
  • J. Deveney and D. Finston, $G_a$-actions on $\bold C^3$ and $\bold C^7,$ Comm. Algebra 22 (1994), 6295--6302.
  • A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progr. Math., 190, Birkhäuser, Boston, 2000.
  • G. Freudenburg, A counterexample to Hilbert's fourteenth problem in dimension six, Transform. Groups 5 (2000), 61--71.
  • ------, A survey of counterexamples to Hilbert's fourteenth problem, Serdica Math. J. 27 (2001), 171--192.
  • J. Khoury, On some properties of elementary derivations in dimension six, J. Pure Appl. Algebra 156 (2001), 69--79.
  • H. Kojima and M. Miyanishi, On Roberts' counterexample to the fourteenth problem of Hilbert, J. Pure Appl. Algebra 122 (1997), 277--292.
  • S. Kuroda, A condition for finite generation of the kernel of a derivation, J. Algebra 262 (2003), 391--400.
  • ------, A counterexample to the fourteenth problem of Hilbert in dimension four, J. Algebra 279 (2004), 126--134.
  • ------, A finite universal SAGBI basis for the kernel of a derivation, Osaka J. Math. 41 (2004), 759--792.
  • ------, A generalization of Roberts' counterexample to the fourteenth problem of Hilbert, Tôhoku Math. J. (2) 56 (2004), 501--522.
  • S. Maubach, Triangular monomial derivations on $k[X_1,X_2,X_3,X_4]$ have kernel generated by at most four elements, J. Pure Appl. Algebra 153 (2000), 165--170.
  • S. Mukai, Counterexample to Hilbert's fourteenth problem for the $3$-dimensional additive group, Preprint 1343, Research Institute for Mathematical Sciences, Kyoto University, 2001.
  • M. Nagata, On the fourteenth problem of Hilbert, Proceedings of the International Congress of Mathematicians (1958), pp. 459--462, Cambridge Univ. Press, New York, 1960.
  • M. Nagata and A. Nowicki, Rings of constants for $k$-derivations in $k[ x_1,\ldots,x_n],$ J. Math. Kyoto Univ. 28 (1988), 111--118.
  • A. Nowicki, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra 96 (1994), 47--55.
  • P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem, J. Algebra 132 (1990), 461--473.
  • R. Steinberg, Nagata's example, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, pp. 375--384, Cambridge Univ. Press, Cambridge, U.K., 1997.
  • R. Tanimoto, Linear counterexamples to the fourteenth problem of Hilbert, J. Algebra 275 (2004), 331--338.
  • O. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math. 78 (1954), 155--168.