The Michigan Mathematical Journal

The spectral function of shift-invariant spaces

Marcin Bownik and Ziemowit Rzeszotnik

Full-text: Open access

Article information

Source
Michigan Math. J. Volume 51, Issue 2 (2003), 387-414.

Dates
First available: 4 August 2003

Permanent link to this document
http://projecteuclid.org/euclid.mmj/1060013204

Digital Object Identifier
doi:10.1307/mmj/1060013204

Mathematical Reviews number (MathSciNet)
MR1992954

Zentralblatt MATH identifier
01997320

Subjects
Primary: 42C40: Wavelets and other special systems

Citation

Bownik, Marcin; Rzeszotnik, Ziemowit. The spectral function of shift-invariant spaces. The Michigan Mathematical Journal 51 (2003), no. 2, 387--414. doi:10.1307/mmj/1060013204. http://projecteuclid.org/euclid.mmj/1060013204.


Export citation

References

  • L. W. Baggett, Processing a radar signal and representations of the discrete Heisenberg group, Colloq. Math. 60/61 (1990), 195--203.
  • ------, An abstract interpretation of the wavelet dimension function using group representations, J. Funct. Anal. 173 (2000), 1--20.
  • L. W. Baggett, H. A. Medina, and K. D. Merrill, Generalized multi-resolution analyses and a construction procedure for all wavelet sets in $\Bbb R^n,$ J. Fourier Anal. Appl. 5 (1999), 563--573.
  • L. W. Baggett and K. D. Merrill, Abstract harmonic analysis and wavelets in $\Bbb R^n,$ The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), pp. 17--27, Amer. Math. Soc., Providence, RI, 1999.
  • J. J. Benedetto, C. Heil, and D. F. Walnut, Gabor systems and the Balian--Low theorem, Gabor analysis and algorithms, pp. 85--122, Birkhäuser, Boston, 1998.
  • J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998), 389--427.
  • C. de Boor, R. A. DeVore, and A. Ron, The structure of finitely generated shift-invariant spaces in $L_2(\Bbb R^d),$ J. Funct. Anal. 119 (1994), 37--78.
  • ------, Approximation from shift-invariant subspaces of $L_2(\Bbb R^d),$ Trans. Amer. Math. Soc. 341 (1994), 787--806.
  • ------, Approximation orders of FSI spaces in $L_2(\Bbb R^d),$ Constr. Approx. 14 (1998), 631--652.
  • M. Bownik, The structure of shift-invariant subspaces of $L^2(\Bbb R^n),$ J. Funct. Anal. 177 (2000), 282--309.
  • ------, On characterizations of multiwavelets in $L^2(\Bbb R^n),$ Proc. Amer. Math. Soc. 129 (2001), 3265--3274.
  • ------, Riesz wavelets and generalized multiresolution analyses, Appl. Comput. Harmon. Anal. 14 (2003), 181--194.
  • M. Bownik, Z. Rzeszotnik, and D. Speegle, A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal. 10 (2001), 71--92.
  • O. Christensen, B. Deng, and C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999), 292--304.
  • I. Daubechies, Ten lectures on wavelets, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992.
  • I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271--1283.
  • I. Daubechies, H. Landau, and Z. Landau, Gabor time-frequency lattices and the Wexler--Raz identity, J. Fourier Anal. Appl. 1 (1995), 437--478.
  • L.-P. Gabardo and D. Han, Subspace Weyl--Heisenberg frames, J. Fourier Anal. Appl. 7 (2001), 419--433.
  • D. Gabor, Theory of communication, J. Inst. Electr. Eng., London (III) 93 (1946), 429--457.
  • D. Han, D. R. Larson, M. Papadakis, and Th. Stavropoulos, Multiresolution analyses of abstract Hilbert spaces and wandering subspaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), pp. 259--284, Amer. Math. Soc., Providence, RI, 1999.
  • D. Han and Y. Wang, Lattice tiling and the Weyl--Heisenberg frames, Geom. Funct. Anal. 11 (2001), 742--758.
  • H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964.
  • ------, The spectral theorem, Springer-Verlag, Berlin, 1986.
  • E. Hernández and G. Weiss, A first course on wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996.
  • A. J. E. M. Janssen, Signal analytic proofs of two basic results on lattice expansions, Appl. Comput. Harmon. Anal. 1 (1994), 350--354.
  • R.-Q. Jia, Shift-invariant spaces and linear operator equations, Israel J. Math. 103 (1998), 259--288.
  • H. Landau, On the density of phase-space expansions, IEEE Trans. Inform. Theory 39 (1993), 1152--1156.
  • D. Larson, W.-S. Tang, and E. Weber, Riesz wavelets and multiresolution structures, Proc. SPIE, 4478, pp. 254--262, SPIE, Bellingham, WA, 2001.
  • Yu. I. Lyubarskiĭ, Frames in the Bargmann space of entire functions, Entire and subharmonic functions, pp. 167--180, Amer. Math. Soc., Providence, RI, 1992.
  • M. Paluszyński, H. Šikić, G. Weiss, and S. Xiao, Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties, Adv. Comput. Math. 18 (2003), 297--327.
  • J. Ramanathan and T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995), 148--153.
  • M. A. Rieffel, Von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann. 257 (1981), 403--418.
  • A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_2(\Bbb R^d),$ Canad. J. Math. 47 (1995), 1051--1094.
  • ------, Affine systems in $L_2(\Bbb R^d)$: the analysis of the analysis operator, J. Funct. Anal. 148 (1997), 408--447.
  • ------, Weyl--Heisenberg frames and Riesz bases in $L_2(\Bbb R^d),$ Duke Math. J. 89 (1997), 237--282.
  • ------, The wavelet dimension function is the trace function of a shift-invariant system, Proc. Amer. Math. Soc. 131 (2003), 1385--1398.
  • Z. Rzeszotnik, Characterization theorems in the theory of wavelets, Ph.D. thesis, Washington University, St. Louis, 2000.
  • ------, Calderón's condition and wavelets, Collect. Math. 52 (2001), 181--191.
  • K. Seip and R. Wallstén, Density theorems for sampling and interpolation in the Bargmann--Fock space. II, J. Reine Angew. Math. 429 (1992), 107--113.
  • E. Weber, Applications of the wavelet multiplicity function, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), pp. 297--306, Amer. Math. Soc., Providence, RI, 1999.
  • G. Weiss and E. N. Wilson, The mathematical theory of wavelets, Twentieth century harmonic analysis---a celebration (Il Ciocco, 2000), pp. 329--366, Kluwer, Dordrecht, 2001.