Abstract
We reveal the phenomenon that “naive” multivariate local polynomial regression can adapt to local smooth lower dimensional structure in the sense that it achieves the optimal convergence rate for nonparametric estimation of regression functions belonging to a Sobolev space when the predictor variables live on or close to a lower dimensional manifold.
Information
Published: 1 January 2007
First available in Project Euclid: 4 December 2007
Digital Object Identifier: 10.1214/074921707000000148
Subjects:
Primary:
62G08
,
62H12
Secondary:
62G20
Keywords:
local polynomial regression
,
Manifolds
Rights: Copyright © 2007, Institute of Mathematical Statistics