Open Access
March 2009 On the distribution of arguments of Gauss sums
Igor E. Shparlinski
Kodai Math. J. 32(1): 172-177 (March 2009). DOI: 10.2996/kmj/1238594554

Abstract

Let Fq be a finite field of q elements of characteristic p. N. M. Katz and Z. Zheng have shown the uniformity of distribution of the arguments arg G (a, χ) of all (q - 1)(q - 2) nontrivial Gauss sums

$$G(a, \chi) = \sum_{x \in {\mathbf F}_q} \chi(x) \exp(2 \pi i \mathrm{Tr}(ax)/p),$$

where χ is a non-principal multiplicative character of the multiplicative group Fq* and Tr(z) is the trace of z $\in$ Fq into Fp.

Here we obtain a similar result for the set of arguments arg G(a, χ) when a and χ run through arbitrary (but sufficiently large) subsets ${\mathscr A}$ and ${\mathscr X}$ of Fq* and the set of all multiplicative characters of Fq*, respectively.

Citation

Download Citation

Igor E. Shparlinski. "On the distribution of arguments of Gauss sums." Kodai Math. J. 32 (1) 172 - 177, March 2009. https://doi.org/10.2996/kmj/1238594554

Information

Published: March 2009
First available in Project Euclid: 1 April 2009

zbMATH: 1184.11055
MathSciNet: MR2518562
Digital Object Identifier: 10.2996/kmj/1238594554

Rights: Copyright © 2009 Tokyo Institute of Technology, Department of Mathematics

Vol.32 • No. 1 • March 2009
Back to Top