Kodai Mathematical Journal

The invariant pseudometric related to negative plurisubharmonic functions

Kazuo Azukawa

Full-text: Open access

Article information

Source
Kodai Math. J. Volume 10, Number 1 (1987), 83-92.

Dates
First available: 23 January 2006

Permanent link to this document
http://projecteuclid.org/euclid.kmj/1138037363

Mathematical Reviews number (MathSciNet)
MR0879385

Zentralblatt MATH identifier
0618.32020

Digital Object Identifier
doi:10.2996/kmj/1138037363

Subjects
Primary: 32H15
Secondary: 31C10: Pluriharmonic and plurisubharmonic functions [See also 32U05] 32F05

Citation

Azukawa, Kazuo. The invariant pseudometric related to negative plurisubharmonic functions. Kodai Mathematical Journal 10 (1987), no. 1, 83--92. doi:10.2996/kmj/1138037363. http://projecteuclid.org/euclid.kmj/1138037363.


Export citation

References

  • [1] K. AZUKAWA, Twointrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan, 38 (1986), 627-647.
  • [2] E. BEDFORD AND B. A. TAYLOR, A newcapacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-41
  • [3] I. GRAHAM, Boundary behavior of the Caratheodory and Kobayashi metrics o strictly pseudoconvex domains in Cn with smooth boundary, Trans. Amer. Math. Soc, 207 (1985), 219-240.
  • [4] N. KERZMAN AND J. -P. ROSAY, Functions plurisousharmoniques d'exhaustio bornees et domaines taut, Math. Ann., 257 (1981), 171-184.
  • [5] M. KLIMEK, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 231-240
  • [6] S. KOBAYASHI, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, Ne York, 1970.
  • [7] S. KOBAYASHI, Intrinsic distances, measures andgeometric function theory, Bull Amer. Math. Soc, 82 (1976), 357-416.
  • [8] P. J. MYRBERG, Uber die Existenz der Greenschen Functionen auf einer gege benen Riemannschen Flache, Acta Math., 61 (1933), 39-79.
  • [9] M. NISHIHARA, K. H. SHON AND N. SUGAWARA, On pseudo-metrics and their in dicatrices in balanced open subsets of a locally convex space, Math. Rep. Toyama Univ., 9 (1986), 109-136.
  • [10] R. ROBINSON, Analytic functions in circular rings, Duke Math. J., 10 (1943), 341-354
  • [11] L. SARIO AND K. OIKAWA, Capacity Functions, Springer, Berlin, 1969
  • [12] R. R. SIMHA, The Caratheodory metric of the annulus, Proc Amer. Math. Soc, 50 (1975), 162-166
  • [13] N. SUITA, Capacities and kernels on Riemann surfaces, Arch. Rational Mech Anal., 46 (1972), 212-217.