Open Access
2006 Relative isoperimetric inequality on a curved surface
Keomkyo Seo
J. Math. Kyoto Univ. 46(3): 525-533 (2006). DOI: 10.1215/kjm/1250281747

Abstract

Let $C$ be a closed convex set on a complete simply connected surface $S$ whose Gaussian curvature is bounded above by a nonpositive constant $K$. For a relatively compact subset $\Omega \subset S \sim C$, we obtain the sharp relative isoperimeric inequality $2\pi \mathrm{Area}(\Omega )-K\mathrm{Area}(\Omega )^{2} \leq \mathrm{Length}(\partial \Omega \sim \partial C)^{2}$. And we also have a similar partial result with positive Gaussian curvature bound.

Citation

Download Citation

Keomkyo Seo. "Relative isoperimetric inequality on a curved surface." J. Math. Kyoto Univ. 46 (3) 525 - 533, 2006. https://doi.org/10.1215/kjm/1250281747

Information

Published: 2006
First available in Project Euclid: 14 August 2009

zbMATH: 1139.53003
MathSciNet: MR2311357
Digital Object Identifier: 10.1215/kjm/1250281747

Subjects:
Primary: 58E35
Secondary: 49K10 , 49Q20 , 53A05

Rights: Copyright © 2006 Kyoto University

Vol.46 • No. 3 • 2006
Back to Top