Open Access
2008 Estimates on the effective resistance in a long-range percolation on ${\mathbb{Z}}^d$
Jun Misumi
J. Math. Kyoto Univ. 48(2): 389-400 (2008). DOI: 10.1215/kjm/1250271419

Abstract

We give several estimates on \emph{volumes} and \emph{effective resistances} in a long-range percolation on a vertex set of a $d$-dimensional square lattice. When $d=1$, our results imply some kind of discontinuity in the long-range percolation model; more precisely, in the order of the effective resistance. Our another consequence is that, when $d \ge 2$ and $s \in (d, d+2)$, where $s$ is the parameter determining the magnitude of the range, the order of the effective resistance corresponds to the $\alpha$-stable process with $\alpha =s - d$.

Citation

Download Citation

Jun Misumi. "Estimates on the effective resistance in a long-range percolation on ${\mathbb{Z}}^d$." J. Math. Kyoto Univ. 48 (2) 389 - 400, 2008. https://doi.org/10.1215/kjm/1250271419

Information

Published: 2008
First available in Project Euclid: 14 August 2009

zbMATH: 1183.60038
MathSciNet: MR2436744
Digital Object Identifier: 10.1215/kjm/1250271419

Rights: Copyright © 2008 Kyoto University

Vol.48 • No. 2 • 2008
Back to Top