Abstract
The Axiom of Projective Determinacy implies the existence of a universal $\underset{\tilde{}}{{\Pi}^1_n}\setminus\underset{\tilde{}}{{\Delta}^1_n}$ set for every $n \geq 1$. Assuming $\rm{MA}(\aleph_{1})+\aleph_{1}=\aleph_{1}^{\mathbb{L}}$ there exists a universal $\underset{\tilde{}}{{\Pi}^1_1}\setminus\underset{\tilde{}}{{\Delta}^1_1}$ set. In ZFC there is a universal $\underset{\tilde{}}{{\Pi}^0_\alpha}\setminus\underset{\tilde{}}{{\Delta}^0_\alpha}$ set for every $\alpha$.
Citation
Greg Hjorth. Leigh Humphries. Arnold W. Miller. "Universal sets for pointsets properly on the nth level of the projective hierarchy." J. Symbolic Logic 78 (1) 237 - 244, March 2013. https://doi.org/10.2178/jsl.7801160
Information