Abstract
Dynamic Topological Logic (𝒟𝒯ℒ) is a multimodal system for reasoning about dynamical systems. It is defined semantically and, as such, most of the work done in the field has been model-theoretic. In particular, the problem of finding a complete axiomatization for the full language of 𝒟𝒯ℒ over the class of all dynamical systems has proven to be quite elusive.
Here we propose to enrich the language to include a polyadic topological modality, originally introduced by Dawar and Otto in a different context. We then provide a sound axiomatization for 𝒟𝒯ℒ over this extended language, and prove that it is complete. The polyadic modality is used in an essential way in our proof.
Citation
David Fernández-Duque. "A sound and complete axiomatization for Dynamic Topological Logic." J. Symbolic Logic 77 (3) 947 - 969, September 2012. https://doi.org/10.2178/jsl/1344862169
Information