June 2011 The Magidor function and diamond
Pierre Matet
J. Symbolic Logic 76(2): 405-417 (June 2011). DOI: 10.2178/jsl/1305810755

Abstract

Let κ be a regular uncountable cardinal and λ be a cardinal greater than κ. We show that if 2≤ M(κ,λ), then ◊κ,λ holds, where M(κ,λ) equals λ if cf(λ)≥ κ, and (λ⁺) otherwise.

Citation

Download Citation

Pierre Matet. "The Magidor function and diamond." J. Symbolic Logic 76 (2) 405 - 417, June 2011. https://doi.org/10.2178/jsl/1305810755

Information

Published: June 2011
First available in Project Euclid: 19 May 2011

zbMATH: 1237.03031
MathSciNet: MR2830408
Digital Object Identifier: 10.2178/jsl/1305810755

Subjects:
Primary: 03E05

Keywords: diamond principle , P_κ(λ)

Rights: Copyright © 2011 Association for Symbolic Logic

JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.76 • No. 2 • June 2011
Back to Top