Abstract
An open U⊆ ℝ is produced such that (ℝ,+,·,U) defines a Borel isomorph of (ℝ,+,·,ℕ) but does not define ℕ. It follows that (ℝ,+,·,U) defines sets in every level of the projective hierarchy but does not define all projective sets. This result is elaborated in various ways that involve geometric measure theory and working over o-minimal expansions of (ℝ,+,·). In particular, there is a Cantor set E⊆ ℝ such that (ℝ,+,·,E) defines a Borel isomorph of (ℝ,+,·,ℕ) and, for every exponentially bounded o-minimal expansion ℜ of (ℝ,+,·), every subset of ℝ definable in (ℜ,E) either has interior or is Hausdorff null.
Citation
Harvey Friedman. Krzysztof Kurdyka. Chris Miller. Patrick Speissegger. "Expansions of the real field by open sets: definability versus interpretability." J. Symbolic Logic 75 (4) 1311 - 1325, December 2010. https://doi.org/10.2178/jsl/1286198148
Information